General information about the DOI system can be found here and here. A DOI name is a digital object identifier for any object of intellectual property. A DOI name provides a means of persistently identifying a piece of intellectual property on a digital network and associating it with related current data in a structured extensible way. DOI was accepted as an ISO standard in 2010.
Crossref enabled

If you have ever tried to follow an URL in an article older than 5-10 years, more often than not you will find that the URL is no longer active. The DOI system is an attempt to overcome this deficiency by providing stable and permanent references for intellectual property on the web.

The MIC journal has implemented the DOI system for every single article published in MIC since the foundation year in 1980. The DOI prefix for MIC is 10.4173 and an individual article has been assigned a DOI on the following format: 10.4173/ For example, the first article published in MIC by Oddvar Hallingstad has the following DOI: 10.4173/mic.1980.1.1 and the following permanent URL This permanent URL links back to the website. If the MIC website is moved in the future, the DOI information will be updated to point to the new address.

Another advantage of the DOI system, is the possibility to register all the references in an article in a structured manner. All the references made in MIC articles starting from 1980 have been submitted into the DOI system. The effect is an increased visibility of MIC articles, which again will lead to a wider audience. MIC also participates in the 'cited-by' system, which can be seen for this article. 'cited-by' shows which other papers have included the actual paper in the reference lists.

The MIC class files for pdfLaTeX found in the Author Information have commands for embedding DOI information in the PDF files. Prospective authors for future MIC articles will receive the DOI identification when the article is accepted. Authors are encouraged to embed the tag into the PDF file themselves using pdflatex prior to publication. Authors are also encouraged to embed DOI tags in their reference lists.

Click on the links below to see the external DOI forward links to MIC:
1980    1981    1982    1983    1984    1985    1986    1987    1988    1989    
1990    1991    1992    1993    1994    1995    1996    1997    1998    1999    
2000    2001    2002    2003    2004    2005    2006    2007    2008    2009    
2010    2011    2012    2013    2014    2015    2016    2017    2018    2019    
2020    2021    2022    2023    2024    

DOI Forward Links to MIC for Year: 2002

 Total number of MIC articles in 2002  11
 Total number of DOI citations  36
 Average citations per article   3.27 

2002, Vol. 23, No. 4:
1.Mehrdad P. FardPassivity Analysis of Nonlinear Euler-Bernoulli Beams”, pp. 239-258
DOI forward links to this article:
[1] Nipon Boonkumkrong and Suwat Kuntanapreeda (2014), doi:10.1177/0959651813520146
[2] Nipon Boonkumkrong, Pichai Asadamongkon and Sinchai Chinvorarat (2018), doi:10.1088/1757-899X/297/1/012047
[3] Nipon Boonkumkrong, Sinchai Chinvorarat and Pichai Asadamongkon (2022), doi:10.1177/16878132221134517
[4] Nipon Boonkumkrong, Sinchai Chinvorarat and Pichai Asadamongkon (2022), doi:10.1016/j.heliyon.2022.e12740
2.Rolf ErgonNoise Handling Capabilities of Multivariate Calibration Methods”, pp. 259-273
DOI forward links to this article:
[1] Rolf Ergon, Maths Halstensen and Kim H. Esbensen (2011), doi:10.1002/cem.1356
[2] Maryam Ghadrdan, Chriss Grimholt and Sigurd Skogestad (2013), doi:10.1021/ie400542n
[3] Bernt Lie, David Di Ruscio, Rolf Ergon, Bjørn Glemmestad, Maths Halstensen, Finn Haugen, Saba Mylvaganam, Nils-Olav Skeie and Dietmar Winkler (2009), doi:10.4173/mic.2009.3.4
[4] Rolf Ergon (2013), doi:10.1002/9781118434635.ch08
[5] Rolf Manne, Randy J. Pell and L. Scott Ramos (2009), doi:10.1002/cem.1181
[6] R. Ergon (2009), doi:10.1002/cem.1180
[7] Rolf Ergon (2013), doi:10.1002/9781118434635.ch8
3.Ole M. Aamo and Thor I. Fossen, “Tutorial on Feedback Control of Flows, Part II: Diagnostics and Feedback Control of Mixing”, pp. 275-298
2002, Vol. 23, No. 3:
1.Ole M. Aamo and Thor I. Fossen, “Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes”, pp. 161-226
DOI forward links to this article:
[1] Romeo Tatsambon Fomena and Christophe Collewet (2011), doi:10.1260/1756-8250.3.2-3.133
[2] Tudor-Bogdan Airimitoaie and Christophe Collewet (2014), doi:10.2514/6.2014-2974
[3] Tudor-Bogdan Airimitoaie and Christophe Collewet (2014), doi:10.2514/6.2014-2938
[4] Viorel Barbu (2011), doi:10.1007/978-0-85729-043-4_3
2002, Vol. 23, No. 2:
1.Stein T. JohansenMulti-phase Flow Modeling applied to Metallurgical Processes”, pp. 77-92
2.Marta Duenas Diez, G. Ausland, Magne Fjeld and Bernt Lie, “Simulation of a Hydrometallurgical Leaching Reactor modeled as a DAE system”, pp. 93-115
DOI forward links to this article:
[1] Marta Dueñas Díez, B. Erik Ydstie, Magne Fjeld and Bernt Lie (2008), doi:10.1016/j.compchemeng.2007.01.007
[2] Marta Dueñas Díez, Magne Fjeld, Einar Andersen and Bernt Lie (2006), doi:10.1016/j.ces.2005.01.047
[3] Christy M. White, Paul Ege and B. Erik Ydstie (2006), doi:10.1016/j.powtec.2006.01.005
[4] V. M Zarochentsev and A. L Rutkovskiy (2024), doi:10.31857/S0869573324021828
3.Britt Halvorsen and Vidar Mathiesen, “Modeling and Simulation of a lab-scale Fluidised Bed”, pp. 117-133
4.Siljan Siljan and Morten Chr. Melaaen, “One-Dimensional Simulation of Clay Drying”, pp. 135-147
2002, Vol. 23, No. 1:
1.Aage I. Jøsang and Morten Chr. Melaaen, “Fluid Flow Simulations of a Vane Separator”, pp. 5-26
DOI forward links to this article:
[1] G. Venkatesan, N. Kulasekharan and S. Iniyan (2013), doi:10.1016/j.desal.2013.09.001
[2] G. Venkatesan, N. Kulasekharan and S. Iniyan (2014), doi:10.1016/j.desal.2014.02.013
[3] G. Venkatesan, N. Kulasekharan and S. Iniyan (2014), doi:10.1016/j.desal.2014.09.018
[4] Yichen Xu, Zhenming Yang and Jinsong Zhang (2017), doi:10.1016/j.ces.2017.05.031
[5] Jianfei Song, Xuefei Hu, Jixiang Zhang and Jianyi Chen (2017), doi:10.1016/j.egypro.2017.12.458
[6] Bo Wang, Bowen Chen and Ruifeng Tian (2019), doi:10.1016/j.anucene.2019.06.060
[7] Bo Wang, Bingzheng Ke, Bowen Chen, Ru Li and Ruifeng Tian (2020), doi:10.1016/j.ijheatmasstransfer.2019.118904
[8] Bo Wang, Gongqing Wang, Bowen Chen, Bingzheng Ke, Ru Li, Jiming Wen and Ruifeng Tian (2020), doi:10.1016/j.anucene.2020.107336
[9] Bowen Chen, Bo Wang, Feng Mao, Bingzheng Ke, Jiming Wen, Ruifeng Tian and Chuan Lu (2020), doi:10.1016/j.anucene.2020.107548
[10] Pengfei Wang, Jin Jiang, Shunyang Li, Xuelong Yang, Xiangyu Luo, Yucheng Wang, Amrit Kumar Thakur and Wensheng Zhao (2020), doi:10.1016/j.seppur.2020.117027
[11] Jiarong Wang, Zhongli Ji and Zhen Liu (2022), doi:10.1016/j.cherd.2021.12.049
[12] Chen Zhao, Jigang Zhao, Mei Cong and Haitao Shen (2022), doi:10.1021/acsomega.2c05581
[13] Danjie Mai, Fulong Zhao, Yuan Zhao, Ruifeng Tian and Sichao Tan (2023), doi:10.1016/j.pnucene.2023.104571
[14] Zhi Qiu, Ling Zhou, Ling Bai, Mahmoud A. El-Emam and Ramesh Agarwal (2023), doi:10.1016/j.geoen.2023.212577
2.Tor A. Hauge and Bernt Lie, “Paper Machine Modeling at Norske Skog Saugbrugs: A Mechanistic Approach”, pp. 27-52
DOI forward links to this article:
[1] Tor Anders Hauge, Roger Slora and Bernt Lie (2005), doi:10.1016/j.jprocont.2004.05.003
[2] Yeong-Koo Yeo, Jae Young Ryu and Sung Chul Yi (2005), doi:10.1007/BF02701456
[3] Bernt Lie, Marta D. Díez and Tor A. Hauge (2005), doi:10.4173/mic.2005.1.3
3.Qianpu Wang, Morten Chr. Melaaen and Sunil R. de Silva, “A Computational and Experimental Study of Fluid Flow in a De-duster”, pp. 53-64