“Online Load and Leakage Estimation in Hydraulic Pitch System for Wind Turbines”

Authors: Casper S. Pedersen, Magnus Fink, Mohit Bhola and Henrik C. Pedersen,
Affiliation: Aalborg University
Reference: 2025, Vol 46, No 3, pp. 111-122.

Keywords: Unscented Kalman Filter, Load Estimation, Leakage Estimation, Wind Turbine Pitch System

Abstract: In wind turbines, the pitch system is a critical subsystem for both regulating the power output and for the safety of the turbine. However, it is also one of the leading contributors to downtime in turbines, as it is prone to faults like internal and external leakage. In this article, a novel method for estimating load and leakage in hydraulic pitch systems is presented. The proposed method is based on Unscented Kalman Filters, where the method integrates load estimation to handle the stochastic nature of wind loads, enhancing the accuracy of leakage detection. Based on the developed method, simulation and experimental results are presented that demonstrate the feasibility and robustness of the method under varying operating conditions and for different parameter variations. From the results, it is therefore found that the method shows good promise for being applied in condition monitoring and fault detection in pitch systems and may therefore be used to reduce downtime and maintenance costs in wind turbine operations.

PDF PDF (6022 Kb)        DOI: 10.4173/mic.2025.3.2

References:
[1] Choux, M., Tyapin, I., and Hovland, G. (2012). Leakage-detection in blade pitch control systems for wind turbines, In Proceedings - Annual Reliability and Maintainability Symposium. 2012. doi:10.1109/RAMS.2012.6175515
[2] Dallabona, A., Blanke, M., and Papageorgiou, D. (2024). Friction Estimation for Condition Monitoring of Wind Turbine Hydraulic Pitch System, In IFAC-PapersOnLine, volume58. Elsevier B.V., pages 598--603. doi:10.1016/j.ifacol.2024.07.284
[3] Dallabona, A., Blanke, M., Pedersen, H.C., and Papageorgiou, D. (2025). Fault diagnosis and prognosis capabilities for wind turbine hydraulic pitch systems, Mechanical Systems and Signal Processing. 224:111941. doi:10.1016/j.ymssp.2024.111941
[4] Julier, S.J. and Uhlmann, J.K. (1997). New extension of the Kalman filter to nonlinear systems, In Signal Processing, Sensor Fusion, and Target Recognition VI, volume 3068. International Society for Optics and Photonics, SPIE, pages 182 -- 193. doi:10.1117/12.280797
[5] Lu, B., Li, Y., Wu, X., and Yang, Z. (2009). A review of recent advances in wind turbine condition monitoring and fault diagnosis, In 2009 IEEE Power Electronics and Machines in Wind Applications, PEMWA 2009. 2009. doi:10.1109/PEMWA.2009.5208325
[6] Ma, R., Zhao, H., Wang, K., Zhang, R., Hua, Y., Jiang, B., Tian, F., Ruan, Z., Wang, H., and Huang, L. (2023). Leakage Fault Diagnosis of Lifting and Lowering Hydraulic System of Wing-Assisted Ships Based on WPT-SVM, Journal of Marine Science and Engineering. 11(1). doi:10.3390/jmse11010027
[7] Marton, L., Fodor, S., and Sepehri, N. (2011). A practical method for friction identification in hydraulic actuators, Mechatronics. 21(1). doi:10.1016/j.mechatronics.2010.08.010
[8] Na, Q., Feng, G., and Tian, T. (2022). Real-Time Leak Detection in High Frequency Hydraulic Cylinder Based on Intelligent Control, Wireless Communications and Mobile Computing. 2022. doi:10.1155/2022/4753328
[9] Padman, P., Xu, J., Vanni, F., Echavarria, E., and Wilkinson, M. (2016). The Effect of Pitch System Reliability on Wind Power Generation's Levelized Cost of Energy, White paper, Moog Industrial Solutions and DNV GL. Wind Europe 2016 presentation.
[10] Palanimuthu, K. and Joo, Y.H. (2023). Reliability improvement of the large-scale wind turbines with actuator faults using a robust fault-tolerant synergetic pitch control, Renewable Energy. 217. doi:10.1016/j.renene.2023.119164
[11] Shields, M., Beiter, P., Nunemaker, J., Cooperman, A., and Duffy, P. (2021). Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind, Applied Energy. 298. doi:10.1016/j.apenergy.2021.117189
[12] Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches, John Wiley & Sons. doi:10.1002/0470045345
[13] Van DerMerwe, R. and Wan, E.A. (2001). The square-root unscented kalman filter for state and parameter-estimation, In 2001 IEEE international conference on acoustics, speech, and signal processing. Proceedings (Cat. No. 01CH37221), volume6. IEEE, pages 3461--3464. doi:10.1109/ICASSP.2001.940586
[14] Walgern, J., Fischer, K., Hentschel, P., and Kolios, A. (2023). Reliability of electrical and hydraulic pitch systems in wind turbines based on field-data analysis, Energy Reports. 9. doi:10.1016/j.egyr.2023.02.007
[15] Wan, E.A. and vander Merwe, R. (2001). The Unscented Kalman Filter, chapter7, pages 221--280, John Wiley & Sons, Ltd. doi:10.1002/0471221546.ch7
[16] Wu, X., Li, Y., Li, F., Yang, Z., and Teng, W. (2012). Adaptive estimation-based leakage detection for a wind turbine hydraulic pitching system, IEEE/ASME Transactions on Mechatronics. 17(5). doi:10.1109/TMECH.2011.2142400
[17] YuriShtessel, L.F., ChristopherEdwards and Levant, A. (2014). Sliding Mode Control and Observation, Birkhäuser. doi:10.1007/978-0-8176-4893-0
[18] Zhao, X., Zhang, S., Zhou, C., Hu, Z., Li, R., and Jiang, J. (2015). Experimental study of hydraulic cylinder leakage and fault feature extraction based on wavelet packet analysis, Computers and Fluids. 106. doi:10.1016/j.compfluid.2014.09.034


BibTeX:
@article{MIC-2025-3-2,
  title={{Online Load and Leakage Estimation in Hydraulic Pitch System for Wind Turbines}},
  author={Pedersen, Casper S. and Fink, Magnus and Bhola, Mohit and Pedersen, Henrik C.},
  journal={Modeling, Identification and Control},
  volume={46},
  number={3},
  pages={111--122},
  year={2025},
  doi={10.4173/mic.2025.3.2},
  publisher={Norwegian Society of Automatic Control}
};