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Abstract

In wind turbines, the pitch system is a critical subsystem for both regulating the power output and for
the safety of the turbine. However, it is also one of the leading contributors to downtime in turbines,
as it is prone to faults like internal and external leakage. In this article, a novel method for estimating
load and leakage in hydraulic pitch systems is presented. The proposed method is based on Unscented
Kalman Filters, where the method integrates load estimation to handle the stochastic nature of wind
loads, enhancing the accuracy of leakage detection. Based on the developed method, simulation and
experimental results are presented that demonstrate the feasibility and robustness of the method under
varying operating conditions and for different parameter variations. From the results, it is therefore found
that the method shows good promise for being applied in condition monitoring and fault detection in pitch
systems and may therefore be used to reduce downtime and maintenance costs in wind turbine operations.
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1 Introduction

The pitch system is a critical subsystem in wind tur-
bines, responsible for regulating power output above
rated wind speeds and acting as an aerodynamic brake
during emergency shutdowns. As highlighted by Pad-
man et al. (2016), pitch system failures are the lead-
ing contributor to wind turbine downtime, resulting
in substantial economic losses due to interrupted en-
ergy production. A recent reliability analysis by Wal-
gern et al. (2023) examined hydraulic and electrical
pitch systems over 1847 and 848 operational years, re-
spectively, and concluded that hydraulic systems ex-
hibit slightly higher reliability, with 0.54 failures per
turbine per year, compared to 0.56 for electrical sys-
tems. In efforts to reduce the Levelized Cost of En-
ergy (LCoE), the wind energy sector is moving towards
larger turbine sizes. Shields et al. (2021) demonstrated
that for turbines ranging from 6-20 MW and wind
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plants of 250-2500 MW, larger turbine sizes can re-
duce LCoE by up to 23%. This upscaling trend results
in longer and heavier blades, for which hydraulic pitch
systems are particularly well-suited due to their high
power-to-weight ratio, scalability, and intrinsic shock-
absorbing properties Lu et al. (2009); Palanimuthu and
Joo (2023).

Faults within hydraulic pitch systems vary in sever-
ity. Dallabona et al. (2025) classify these into high,
medium, and low categories. High-severity faults may
thus include both external and internal leakage in
valves and cylinders, as well as friction increases in
actuators and rotary-union bearings. Accurate estima-
tion of leakage and load based on existing sensor data is
thus essential for implementing e.g. fault-tolerant con-
trol strategies and for predicting wear-related failures
and remaining useful life (RUL) of system components.

Leakage estimation has been extensively studied,
with existing methods broadly categorized as either
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model-based or data-driven. Model-based approaches
commonly utilize a Kalman filter-type approach to
estimate leakage directly or through leakage coeffi-
cients. Data-driven methods, on the other hand, ex-
tract features from sensor data collected under vari-
ous operational conditions and use machine learning
models to classify fault levels, typically through of-
fline, post-processing workflows. However, for sys-
tems subjected to stochastic loading conditions such as
wind turbines, data-driven models require large, high-
quality datasets, which limits their practicality. As a
result, leakage detection methods using data-driven ap-
proaches have almost entirely focused on applications
with known load characteristics.

A combined Wavelet Packet Transformation (WPT)
and Support Vector Machine (SVM) method was pro-
posed by Ma et al. (2023) for leakage detection in
hydraulic cylinders used in marine systems. Their
methodology, validated against AMESim-based sim-
ulations and experimental data, involved frequency-
domain analysis of pressure signals and SVM-based
fault classification. However, the approach is limited
by its reliance on simplified loading conditions. Other
WPT-based studies Zhao et al. (2015); Na et al. (2022)
have also shown promising results in fault classification
by correlating energy features with known fault levels.
Nonetheless, they typically do not account for exter-
nal disturbances such as fluctuating wind loads, which
could be addressed through load estimation.

In a more application-specific context, Wu et al.
(2012) presented an adaptive parameter estimation
method to identify both internal and external leakage,
using wind load data from the NREL 1.5 MW Open-
FAST model. Experimental validation on a scaled lab-
oratory setup showed promising results, though the
method relied on flow-rate sensors that are rarely used
in full-scale turbines due to cost. Similarly, Choux
et al. (2012) used residual analysis and multiple Ex-
tended Kalman Filters (EKFs) to detect leakage by
comparing estimated and measured system behavior.
Their approach included modeling different leakage
scenarios—ranging from zero to combined internal and
external leakage—and emphasized the need for a reli-
able fault-free reference model. While both EKF and
State-Augmented EKF (SAEKF) techniques proved ef-
fective, SAEKF was found to be significantly more
computationally demanding, requiring up to twelve
times more resources, and both approaches needed
sampling rates of at least 1 kHz to be effective. More-
over, the experimental setup did not fully replicate real
turbine loading conditions, raising concerns about real-
world applicability.

In addition to leakage, increasing cylinder friction
may also be monitored for predicting faults related to
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worn-out seals and metal-to-metal contact. Marton
et al. (2011) employed a piecewise linear approxima-
tion technique to identify friction parameters for lin-
ear actuators but using bang-bang control inputs to
the servo valve. Data from pressure sensors and veloc-
ity measurements were utilized to estimate the friction
parameter. However, the impact of oil temperature
on the friction parameter was not addressed. Nonethe-
less, the method could be applied for online monitoring
of friction force in hydraulic cylinders in operations,
potentially serving as a fault identification metric as
cylinder wear increases, but its applicability is limited
to applications with a constant or known load force.
For real-time condition monitoring in wind turbines,
Dallabona et al. (2024) proposed a method for de-
tecting friction-related faults using wear-sensitive fric-
tion modeling. By incorporating a root-bending mo-
ment sensor and applying a sliding mode robust dif-
ferentiator with band-stop filtering, the approach iso-
lated friction effects from wind-induced disturbances.
A modified least squares estimator was then used to
ensure convergence and enable statistical change de-
tection, thereby minimizing false alarms during opera-
tion. However, despite the method showed promising
results, installing a root-bending torque sensor will not
be a feasible approach for most wind turbine applica-
tions.

As apparent from the above, research related to leak-
age estimation in hydraulic cylinders is typically linked
to a constant or known loading of the cylinder. In re-
ality, the load force on the pitch cylinder is composed
of both gravitational forces from the blade, blade dy-
namics, and unknown and stochastic loading from the
wind. Therefore, the focus of the current article is on
leakage estimation in hydraulic pitch systems, but tak-
ing into account the unknown variations in the wind
loads. Specifically the article investigates and presents
a method for internal leakage detection in hydraulic
pitch system, i.e. the cylinder and proportional valve,
as this is shown to degrade the performance of the pitch
position controller. However, the method is applica-
ble to external leakage as well, but the two types of
leakage cannot be separated from each other with the
presented method, and with the used experimental set-
up it is only possible to test for internal leakage. As
the focus is on wind turbines with stochastic loads, the
approach is based on a model-based approach using an
Unscented Kalman Filter, but also incorporating a load
estimation algorithm for handling the unknown loading
of the cylinder. The presented methods thus contains
both a load estimation scheme that may be utilized
separately, and a leakage estimation scheme, and the
two methods are tested in both simulation and experi-
mentally on a full scale pitch system set-up, where real
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wind conditions are emulated. Based on these results,
it is shown that the methods accurately estimate both
the internal leakage and the load torque in the system,
while both methods also exhibit robustness to param-
eter uncertainties and unknown wind conditions.

The paper is organized as follows: In section two,
the system is described along with a model. In sec-
tion three, the load estimation algorithm is presented,
and in section four, the leakage estimation method is
presented. In section five, simulation results are pre-
sented, also showing the robustness towards parameter
variations. In section six, the experimental set-up is
presented along with the experimental results validat-
ing the algorithms, and finally, in section seven, the
conclusions are presented.

2 System Description and Model

The model of the turbine is based on the NREL 5MW
turbine and utilizing OpenFAST, where the system has
been modified to include a hydraulic pitch system. The
latter is based on a standard state of the art configu-
ration and designed/scaled to the 5SMW turbine. The
model for the simplified hydraulic pitch system is pre-
sented in the following, where the model is based on
experimentally validated models of a similar pitch sys-
tem. The pitch system centers around a disk that con-
nects the turbine blade to the rotor hub through the
blade bearing. The bearing disk is actuated by the
hydraulic cylinder (C1 in Figure 1), that actuates the
disk at an angle, to change the blade pitch. The pitch
system is powered by a Hydraulic Power Unit (HPU)
in the turbine nacelle, connected through a hydraulic
rotary union (R1).

A diagram of the main parts of the hydraulic system
can be seen in Figure 1.

2.1 Model

In the following, the model of the pitch system is pre-
sented, including a model of the proportional valve,
and the mechanical connection to the blade.

2.1.1 Hydraulic Model

The hydraulics of the pitch system are modeled using a
lumped parameter model. A diagram of the hydraulic
system is shown in Figure 2. The hydraulic system is
divided into two control volumes: the piston (p,) and
rod (p,) sides of the pitch cylinder, whereas the supply
pressure is assumed constant without loss of generality.
Pressure gradients for each volume are modelled using
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Figure 1: Hydraulic diagram of the main parts of a tur-
bine pitch system. Valves V2, V3 and V4
make op the emergency pitch system. These
valves are shown in their OFF state, during
normal operation they are turned ON.

the continuity equation, as:

pp = [‘2 (Qp + Qle - Api'p)
8.
V.

(1)

(Arm.p - Qr - Qle) (2)

pr:

where (3; is the oil bulk modulus of the respective cham-
ber, which is modelled as being pressure and air depen-
dent, and V; is the volume of the respective chamber,
which is a function of the piston position. The flows
across the proportional valve are modelled using the
orifice equation, with the modification that positive Q..
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Figure 2: Hydraulic model diagram. Valves V2, V3
and V4 are modelled in their ON state, valve
V15 is neglected.
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flow is going across the check valve, thus:
Qp = H(z,)CaA(z,)1/ 2|ps — pplsign(ps —pp)  (3)
+ H(—,)CaA(xy)y/ 2|y — pelsign(py —pe)  (4)
Qr =

H(—QTU)CdA(zv)\/ %‘ps — prlsign(ps —pr) (5)

+H($’U)KC (pr — Ds _pcr) (6>

where H(-) is the Heaviside function, A(z,) is the re-
spective opening area of the valve, Cy the discharge
coefficient, and K. and p.. are respectively the flow
coefficient and crack pressure for the check valve. Fi-
nally, the leakage flow (Q;.) is assumed laminar, thus
yielding the model:

Qle = Cle (pr - pp) (7>

where Cj. is the leakage coeflicient. For the 4/3 pro-
portional valve the area characteristic of the valve is
approximated from available data. The movement dy-
namics of the valve is approximated as a 2"4 order sys-
tem and including a slew rate limitation.

2.1.2 Mechanical Model

A kinematic diagram of the pitch system can be seen in
Figure 3. Here 6, is the pitch angle, which varies in the

Figure 3: Simplified diagram of the turbine pitch sys-
tem.

range —3° to 87°, with the blade fully out of the wind
at 0, = 87°, and fully into the wind at 6, = 0°. A is the
hinge point around which the pitch cylinder rotates, B
is the point where the pitch cylinder connects to the
bearing disk, and C' is the center of the bearing disk.
Since the pitch cylinder is linked to the bearing disk,
extension of the pitch cylinder, x,, is uniquely related
to the pitch angle 8, as:

xp(Gp) :\/LE!C + L%’C — QLACLBC COS (CD + 9p + Goff)
— Leyi (8)
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By which the Drive Jacobian can be defined as:

Oz,

J(0p) = 879,)’ Zp = T (0p) 'ép 9)
By assuming no power loss in the gearing between z,
and 6, the cylinder torque on the bearing disk can also

be found using the Drive Jacobian:

Thyd = j(ap)T “Fhyd (10)

Dynamics

To model the dynamics of the mechanical part of the
turbine pitch system the Euler-Lagrange equation is
used, where the pitch angle 6, is chosen as the gen-
eralized coordinate. The external torque includes the
torque exerted by the hydraulic pitch cylinder, the load
torque exerted by the wind, and friction torques:

(11)

The friction torque is modelled as viscous and Coulomb
friction, with the tangent hyperbolic function replacing
the sign function to avoid numerical problems:

Text = Thyd — Tfric — Tload

Tfric = B, - 9;0 + TCouloms * tanh (Ktanh : op) (12)
where B, and Tcoulomps are combined values for the
cylinder and bearing disk, and K4, is a constant that
adjusts the hyperbolic tangent curve.

The variation in potential energy is zero, why the La-
grangian of the mechanical turbine pitch system can be
described from the kinetic energy only. The mechani-
cal dynamics is then derived from the Euler Lagrange
equations as:

é 77_ext - mp j(gp) j(gp) 912?
P mpJ (0p)* + Jb

(13)

where m,, is mass of the pitch cylinder, Jj, is the inertia
of the bearing disk. Further, the rotational kinetic en-
ergy of the pitch cylinder is neglected, as the rotational
speed and inertia of the cylinder is found to be signif-
icantly smaller than that of the blade and bearing disk.

3 Load Estimation using Unscented
Kalman Filter

As described in the introduction, most leakage estima-
tion methods rely on a well-known or repetitive load
in the system. However, for wind turbines the pitch
load is unknown and stochastic, why in the follow-
ing, an Unscented Kalman Filter (UKF) is developed
to estimate the load on the pitch cylinder. An UKF
approach is here used as opposed to the more widely
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used Extended Kalman Filter (EKF), due to the highly
non-linear nature of the hydraulic pitch system and the
stochastic nature of the wind load. Comparing the two
different Kalman filter approaches (Wan and van der
Merwe, 2001), the UKF is based on the unscented
transform, which is second order accurate, whereas the
EKF only provides first order accuracy. Furthermore,
the EKF algorithm requires heavy computational ef-
fort, as the Jacobian of the non-linear system needs to
be found analytically or using a numerical method.

3.1 UKF algorithm

As mentioned, the UKF is based on the unscented
transform, first described in (Julier and Uhlmann,
1997). Calculating a set of o-points, the unscented
transform captures the true mean and covariance
of a nonlinear system by propagating them through
the nonlinear system equations directly. Therefore,
for highly non-linear systems as the hydraulic pitch
system, the UKF is expected to have an increased
performance compared to the standard EKF.

The UKF algorithm requires that the state estima-
tion vector, X, and the state estimation error covari-
ance matrix, P, are estimated at the first time step to
initialize the filter. This is done as:

%0=B(x0) = E (6, 0, 5, p]") (1)

Po=E ((xo ~ %) (x0 — )“co)T) (15)
where E denotes the expected value of the state, which
in this case is the initial value of the state. Typically,
the initial states are not known and, therefore, the ini-
tial states are estimated with a best guess to initialize
the filter. The UKF algorithm is divided into two sub-
sections, the prediction step and the correction step,
as described next.

3.1.1 Prediction step

The prediction step uses the state estimation vector
and the state estimation error covariance matrix from
the last time step to update them at the current time
step. This is done by calculating a set of o-points of
which the weighted mean and covariance matrices are
determined in order to calculate the Kalman gain.
Equation (16) calculates the o-point matrix, where
each vector in the matrix corresponds to a set of o-
points in the state space:

20 =%
klk—1 —*klk—1

ﬁl(@ﬁ)k—l :Xk|k—1 + AX(i) (16)

Ax) determines the spread of the o-points and is de-
termined as:

Ax® = (1/6Pk|k_1>A i=1,2,. M
AxMH+) — 1. (,/CPH,H) Li=1,2,., M

where ¢ = a? (M + k), with a and x being parameters
that determine the spread of the o-points, and M is
the number of states in the system. Further, the ma-
trix square root is calculated using the Cholesky factor-
ization using the lower triangle of the state estimation
error covariance matrix.

Extracting the ¢ points from the measured states,
the weighted mean, covariance, and cross covariance
are determined as:

(i) NO)

Fiphr =C Xy, i=0,1,2,.,M  (17)
2M ) )
ye=> (Wi -5 ) (18)
=0

2M
. . ) T
Py = Z Wg) (y;ﬁl,l - yk) (5’1(;\)1@71 - yk) + Ry
=0

(19)
1
Pyy = .
XY Toq2 (M + k)
2M , @ T
Z (iéﬂ)k,l - ik|k—1> (ykﬁk,l - yk) (20)

i=1
where C is the system output matrix, Ry is the mea-
surement noise covariance matrix and the weights WIE/})

and Wg ) are given as:

M

w9 =1- PTG (21)
Wil = m Li=1,2,...,2M (22)
W = (2—a®+8) - % (23)
w) = m Li=1,2,..,2M (24)

where (3 is a parameter that adjusts the assumed dis-
tribution. The estimate of the system states and the
state estimation error covariance matrix are obtained
as:

K =Pxy - Py!
Kk = Xgjp—1 + K(yr — Jr) (26)
Py =Py —K-Py - K7
Where K is the Kalman gain.
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3.1.2 Correction step

Estimates of the state estimation vector and state es-
timation error covariance matrix at the next time step
are found by calculating a new set of o-points as:

20 =%
K|k — K|k

%{) =% + Ax (28)
and propagating each o-point through the non-linear
state transition function using the Forward-Euler
method to predict the state vector as:

ORI N0 N0
Xpfap = f (ch\lw“k) T, +Xk\l~c

(29)
where g is the input to the system, T is the sample
time, and f (i,(sl)k, ug) is the non-linear state transition
function.

A weighted mean of the state estimation vector and
the state estimation error covariance is found to update
the algorithm for the next time step:

2M
Ripipe = Y Wzﬁf[)ﬁgiuk (30)

=0

Proapg=
o 1) (o) (4) T
Z We (ik+1|k - ’A(kﬂlk) (ik+1|k - ’A‘kﬂlk)
1=0
+ Qk (31)

where Q is the process noise covariance matrix.

3.1.3 Scaling

Hydraulic systems are known to be numerically badly
scaled due to the numerically large pressures com-
pared to angular position and velocity. Therefore, to
avoid any computational issues when calculating the
Cholesky decomposition, the state vector of the UKF
is scaled such that all numerical values are within a rea-
sonable region. Therefore, since the maximum system
pressure of the HPU is 210 bar, the pressure states are
scaled by the inverse of this. The position and velocity
states are not scaled as their respective numerical val-
ues are within a region of which numerical issues are
not a problem.

3.1.4 Adjusting Parameters

The UKF is adjusted through three tunable parameters
(a, B and k), and the system specific process noise, Qy,
measurement noise, Ry, and covariance matrices.
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The « parameter adjusts the spread of the o-points
and is usually chosen between 1 and 0, and x is a
secondary spread parameter to adjust o-point spread
(Wan and van der Merwe, 2001), but is often set to
zero, (Simon, 2006; Van Der Merwe and Wan, 2001),
which is also the case used here. Finally, as the distri-
bution is assumed Gaussian 8 = 2 is used for the load
estimation.

From the initial adjustments for the UKF param-
eters for the leakage estimator, it is found that a g
value of 1.2 gives a good result. This suggests that the
state covariance distribution of the pitch system is not
Gaussian.

The process noise covariance matrix Qp describes
how much the model from the state transition function
is trusted, how much inaccuracy there is in the model,
and how much external disturbance there is. If a value
in Qg is decreased the Kalman filter will rely more
on the model and less on measurements for the given
state, and vice versa. The measurement noise covari-
ance matrix Ry describes how much noise there is in
the measured signals. In this project Qi and Ry are
assumed to be diagonal matrices, meaning that pro-
cess and measurement noise is not correlated between
states.

The tuning of @ was initially based on an analysis
of the system’s sensitivity to noise and the amplitude of
the load. However, this initial approach did not lead
to stable estimation. Instead, it served as a starting
point for a trial-and-error-based adjustment process,
which led to the following set of parameter sets used
in the final implementation for the leakage estimator:

Rip i =[0.1 0.1 0.1 0.1] (32)
Qiprae = [107% 1072 1076 107* 107%] (33)
a=10""AB=12 (34)

and for the load estimator:

— |10 10000 (2:10%)%  (2:10%)?
Riprac = [1875 50 2107 2.107 (35)

Qiprac = [10710 102 1010 10 35]  (36)
a=10"*"A"B=2

3.2 Load Estimation

In order for the UKF to estimate the loading on the
pitch cylinder, the non-linear state transition function
has to be augmented to include the load torque as a
state, which includes making an assumption of the dy-
namic behaviour of the unknown stochastic wind load.
A reasonable assumption is that the wind load torque
is slowly varying compared to the pitch system dynam-
ics and bandwidth as the turbine blade dynamics acts
as a low pass filter due to the inherent high inertia.
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Therefore, the load torque may be included in the non-
linear state transition function as follows by setting the
derivative of the load torque to zero:

[x} - [f % u)}

An important feature of the load estimation is that
it is, and has to be, robust towards variations in in-
ternal leakage, such that the load estimation may be
included in the leakage estimation algorithm. There-
fore, when testing this estimator the leakage coefficient
in the simulation model is varied. As described in the
previous section the states are scaled to avoid numer-
ical issues in the UKF. As the load torque is included
as a state in the UKF, it is scaled by a factor of T(l)e?n
which corresponds to the inverse of the maximum load

torque normally experienced at the pitch bearing.

(38)

4 Leakage Estimation Using UKF

Normally in a wind turbine pitch system, a velocity
sensor is not installed. Therefore, the UKF estimating
the leakage needs to be accurate without velocity in-
formation, or alternatively a velocity estimator needs
to be used. As the leakage flow appears in the conti-
nuity equation, which depends on knowing the change
in volumes, it is a fair assumption that a velocity esti-
mator is needed to allow the UKF to have enough in-
formation about the system. Furthermore, this paper
includes the load estimation in the algorithm as a mea-
sured disturbance but not a state, where the proposed
structure of the leakage estimator is seen in Figure 4. A
Super Twisting Sliding Mode (STSM) observer is used
to estimate the piston velocity, as it has shown to yield
more robust results in similar applications compared
to a standard differentiator approach. The STSM al-
gorithm is further explained in the next section.

Op

| >[STSM }= UKF  [Cle
0, gp > ’
T )

UKF

[T

Figure 4: Diagram of the leakage estimation structure
using a UKF to estimate the load torque and
feeding it to the leakage estimator.

To estimate the leakage coefficient using a UKF,
it has to be included as a state in the state transi-
tion function. The leakage coefficient is assumed to
be slowly varying, as the most common type of leakage
change in a system is when the leakage slowly increases

over time. The augmentation of the state transition
function is seen in Eq. (39), where Cj. is the estimate
of the leakage coefficient of the system:

ARG

Augmenting the system to include the leakage coef-
ficient as a state requires scaling, why the state is
scaled by the inverse of the leakage coefficient used for
the validated simulation model, which is C;. = 1.25
L/min/hbar.

(39)

4.1 Pitch Velocity Estimation

The Super twisting velocity estimator is based on
Yuri Shtessel and Levant (2014). The pitch velocity
estimation error is defined as:

(40)

The super twisting algorithm then determines the ve-
locity estimate as:

0, = —h1\/|0,|sign(8,) + @ (41)
W = —hasign(8,) (42)
where the constants h; and hs are chosen as:
h1 = 1.5yC1
he = 1.1C4 (43)

Where, if C1 is chosen as a bound on the pitch acceler-
ation, stability of the observer is proven and a sliding
mode on (6,,6,) = (0,0) exists. Hence, the estimation
error 9~p should ideally be zero. For the pitch system
C) is chosen as C; = 10 rad/s%.

As the STSM works as a differentiator, it is quite
sensitive to noise. However, it is found that the leakage
estimating UKF is able to effectively filter out the noise
in the velocity estimate.

5 Simulation Results

The described non-linear model from Section 2 is used
as a simulation model depicting a real pitch system.
In the simulation model a standard PI controller is
designed to control the pitching angle. Furthermore,
Gaussian noise is added to the position and pressure
signals, to emulate normal working conditions. The po-
sition measurement is added a noise of 0.005° standard
deviation, and the pressure signals have an added noise
of 0.2bar standard deviation, which both correspond
to the noise levels on the physical set-up described in
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the following section. The load and leakage estimators
are tested using a sample frequency of 1 kHz. Dur-
ing the simulations, the leakage coefficient is gradually
increased using a step function to test the load and
leakage estimators at different leakage levels ranging
from 1L/min/hbar to 50 L/min/hbar. In Figure 5 the
simulated results of the load estimation can be seen,
under a situation where the pitch system is operating
under normal load conditions and 17m/s wind condi-
tions, which resembles more rough working conditions.

Simulated Load Estimation
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Figure 5: Results of load estimation at different leak-
ages, at a 1 kHz sampling frequency with
noise added to the feedbacks.

As shown in the figure, these results are achieved
with a leakage fault present which increases in steps
over time. This result shows that the UKF is able
to accurately estimate the load applied to the pitch
cylinder, and that it is robust toward leakage faults.
It should be noted that the estimator does not dis-
tinguish between the load torque applied by the wind
and unmodeled friction dynamics from potential fric-
tion faults but estimates the combined unmodeled load
torque.

When considering the leakage estimation, the simu-
lation results are shown in Figure 6. From the graphs
it may be seen that the leakage estimate using the pro-
posed estimation structure converges for each step in
the leakage and estimates the leakage with reasonable
accuracy. The initial inaccuracy is due to initialization.
It should also be noted that the leakage estimator has a
response time of 3s to 5s, which is significantly below
normal leakage variations.

To evaluate the robustness of the proposed estima-
tion structure, a series of simulation tests are per-
formed. In these test parameters are changed in the
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Figure 6: Simulation results for the proposed leakage
estimation structure at a 1 kHz sampling fre-
quency.

simulation model but not in the models used in the es-
timation structure. A single parameter is changed at a
time, and each parameter is varied in the range shown
in Table 1. All tests are conducted with a constant
leakage at 20 L/min/hbar. From this series of simu-

Parameter:  Base Value: Variation:
0 885kg/m? 850-900 kg/m?
Bp 10000 bar 6-10 kbar
Br 10000 bar 8-12 kbar
B, 175Nm/(°/s)  50-2000 Nm/(°/s)
mp 104 kg 99-109 kg
Jy 380 kgm? 190-570 kgm?

Table 1: Parameter variation range for the leakage es-
timation robustness tests.

lation tests it is found that only two parameters have
an effect on leakage estimation, that being oil density
(p) and the bulk modulus of the piston side chamber
(Bp). Figure 7 shows the effect of a piston side bulk
modulus reduction to 6000 bar, resulting from pressure
variations or increased air content in the oil, which is
the parameter variation which has the largest effect on
the algorithm. However, from the results, it is possible
to see that the algorithm is still capable of tracking the
leakage accurately.
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Figure 7: Results of leakage estimation with simulation
model ﬁgpp reduced to 6000 bar.

6 Experimental Setup and Results

To test the algorithms in real life, a full scale pitch
system designed for a 3MW turbine is utilized. The
system is comprised of a pitch bearing, pitch cylinder,
proportional valve, valve manifold and corresponding
pressure and position sensors as shown in the diagram
in Figure 1. The safety system is excluded in the set-
up, which is a reasonable exclusion, as it is not used
under normal operation. Besides the pitch system un-
der investigation the experimental set-up consist of a
load cylinder and corresponding valves, and the system
HPU including a minor accumulator, which is shared
between the two systems. The load cylinder is mounted
underneath the bearing and is acting as the load, thus
emulating the wind loading and the blade dynamics on
the pitch bearing. A picture of the set-up with nota-
tion of the main components is shown in Figure 8. To
emulate the internal leakage in the pitch system, an ex-
tra connection is made between the rod and piston side
chambers of the cylinders, in which an on-off valve and
a manually adjustable orifice is included. This way the
leakage coefficient can be controlled through the man-
ual valve, and the leakage can be enabled and disabled
by respectively opening and closing the on-off valve.
Unfortunately it has not been possible to fit a flow me-
ter with reasonable resolution to the set-up, and there-
fore the flow across the leakage emulation valve has
been determined via the pressure measurements in the
two chambers.

Besides the pressure sensors mounted on the pitch
cylinder, pressure sensors are installed to measure sup-
ply, tank, and the two pressures in the load cylinder.

Prop. valve/ &
& manifold?

Figure 8: Image of the experimental set-up, with indi-
cations of the main components. The po-
sition sensor is build into the pitch cylin-
der, and pressure sensors are connected to
each volume. The leakage emulation valve
is mounted behind the pitch cylinder in the
picture. The speedgoat and HPU is not in-
cluded in the picture.

All the pressure sensor measurements have a standard
deviation of &~ 0.2 bar and the position sensor measure-
ment has a standard deviation of =~ 0.5 cm. The al-
gorithms are implemented on a Performance real-time
target Speedgoat set-up running Simulink, the pitch
controllers, and the UKFs are both running with a
sampling frequency of 1kHz. Different tests have been
made, and in the following results for respectively 11
m/s and 13 m/s average wind speed are shown, which,
respectively, corresponds to just below and above rated
wind speed of the turbine. The simulation results from
other wind speeds show similar results, but power sup-
ply limitations restricts the physical load emulation
system to operate below 13m/s wind speed. The re-
sults from the load torque estimation is shown in Fig-
ure 9 and Figure 10, whereas the estimated leakage and
impact of process noise are shown in Figures 11 and 12,
respectively.

From Figure 9 and Figure 10, it is seen that the
proposed load estimation algorithm demonstrates solid
performance in tracking the actual load dynamics.
There is a small offset observed between the true and
estimated load values, but despite this the algorithm
captures the dynamic behavior very well. It should
here be noted that part of the offset may likely be at-
tributable to minor biases in one or more of the pres-
sure measurements, which propagate through the esti-
mation process.

For the adjustment of the Unscented Kalman Fil-
ter (UKF), particularly the choice of process noise co-
variance plays a crucial role in balancing responsive-
ness and robustness of the estimate. While increasing
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Figure 9: Experimental result of load estimation at 11
and 13 m/s mean wind speed.

the process noise may improve the bandwidth and al-
low the estimator to follow rapid changes more closely,
it also introduces higher sensitivity to measurement
noise. Therefore, as the load estimate is subsequently
used as input for a leakage estimation algorithm, exces-
sive noise is undesirable and can degrade overall perfor-
mance. Thus the used values yield a proper compro-
mise. Finally, it should be noted that the algorithm
has also been tested with lower sampling frequencies.
The results thus show that the algorithm maintains
acceptable performance even at reduced sampling fre-
quencies, down to 100 Hz, which makes it suitable for
embedded implementations with constrained computa-
tional resources or limited sensor update rates.

Leakage Estimation lab results
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Figure 11: Experimental result of leakage estimation at
11 m/s mean wind speed. The vertical lines
represent the time instances where a manual
change in the leakage level has been made.
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Figure 10: Experimental result of load estimation at
11 and 13 m/s mean wind speed with
zoomed view.
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Figure 12: Result of changing process noise parameter
in the UKF.

Shifting focus to the leakage estimation experiments,
Figure 11 shows the result for the 11 m/s test case. The
leakage estimation algorithm was evaluated through a
300-second time span, where the first and last 100 sec-
onds of the leakage estimate test corresponds to the
internal leakage across the valve, while in the middle
period the leakage flow in the cylinder was increased
to emulate a change in leakage coefficient. From the
graph it can be seen that the estimator successfully
tracked these changes, with the estimated leakage set-
tling at consistent values during repeated low leakage
conditions, and at a distinct higher level during the
middle phase. Results with similar characteristics and
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convergence was seen for other wind velocities.

As for the load estimator algorithm, the adjustment
of the process noise parameter of the UKF directly in-
fluences the responsiveness of the estimator. A lower
process noise leads to a slower-varying estimate with
reduced sensitivity to measurement fluctuations, while
a higher process noise results in a more responsive esti-
mate. However, tests conducted at a constant leakage
level show that the mean estimated leakage remains
largely unaffected by the choice of process noise. The
differences are therefore primarily observed in the set-
tling time and the magnitude of oscillations in the tran-
sient response, making the algorithm fairly robust to
real process noise variations, as leakage is typically a
slow varying phenomenon, where it is the static value
that is of interest.

7 Conclusion

As described in the introduction, leakage is a significant
failure mode in hydraulic pitch systems, but the meth-
ods considered in literature for leakage estimation in
hydraulic systems have typically relied on constant or
known load forces. The focus of the current study has
therefore been on the development and validation of a
load and leakage estimation method for hydraulic pitch
systems in wind turbines using an Unscented Kalman
Filter. The method addresses the challenge of unknown
and stochastic wind loads by incorporating a load es-
timation algorithm for predicting the load torque ac-
tion on the blade bearing and hence the pitch cylinder.
Simulation results confirmed the robustness of the ap-
proach to parameter variations and noise, while exper-
imental validation on a full-scale pitch system demon-
strated accurate leakage and load torque estimation.
The findings thus suggest that the proposed method
can be used to enhance the reliability and efficiency
of wind turbine operations by enabling real-time con-
dition monitoring and early fault detection of leakage
faults, while also being applicable to other types of hy-
draulic systems with unknown load conditions.
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