“Stochastic Sequential Model Predictive Control for Operating Buffer Reservoir in Hjartdøla Hydropower System under Uncertainty”

Authors: Changhun Jeong, Beathe Furenes and Roshan Sharma,
Affiliation: University of South-Eastern Norway and Skagerak Kraft AS
Reference: 2024, Vol 45, No 2, pp. 41-50.

Keywords: Model predictive control, Stochastic MPC, Uncertainty, Flood management

Abstract: This study focuses on demonstrating the effectiveness and efficiency of the Stochastic Sequential Model Predictive Control (MPC) framework within the context of the Hjartdøla hydropower system. Multistage MPC, while effective in managing uncertainty, poses challenges due to its high computational demands and complex optimal control problems, particularly in applications requiring long-term forecasting, such as hydropower systems. Through a comparative simulation study with multistage MPC, this paper highlights the superior feasibility and computational speed of the Stochastic Sequential MPC framework. This work contributes to the broader understanding of MPC applications in hydropower systems.

PDF PDF (1118 Kb)        DOI: 10.4173/mic.2024.2.1

[1] Andersson, J. A.E., Gillis, J., Horn, G., Rawlings, J.B., and Diehl, M. (2019). CasADi -- A software framework for nonlinear optimization and optimal control, Mathematical Programming Computation. 11(1):1--36. doi:10.1007/s12532-018-0139-4
[2] Batalla, R.J., Gibbins, C.N., Alcázar, J., Brasington, J., Buendia, C., Garcia, C., Llena, M., López, R., Palau, A., Rennie, C., Wheaton, J.M., and Vericat, D. (2021). Hydropeaked rivers need attention, Environmental research letters. 16(2):21001. doi:10.1088/1748-9326/abce26
[3] IEA. (2021). Hydropower special market report—analysis and forecast to 2030, https://www.iea.org/reports/hydropower-special-market-report, License: CC BY 4.0.
[4] Jeong, C., Furenes, B., and Sharma, R. (2021). MPC operation with improved optimal control problem at dalsfoss power plant, Proceedings of SIMS EUROSIM conference 2021. 11(1):226--233. doi:10.3384/ecp21185226
[5] Jeong, C., Furenes, B., and Sharma, R. (2023). Implementation of simplified sequential stochastic model predictive control for operation of hydropower system under uncertainty, Computers & Chemical Engineering, 2023. 179:108409. doi:10.1016/j.compchemeng.2023.108409
[6] Jeong, C., Furenes, B., and Sharma, R. (2023). Multistage Model Predictive Control with Simplified Scenario Ensembles for Robust Control of Hydropower Station, Modeling, Identification and Control, 2023. 44(2):43--54. doi:10.4173/mic.2023.2.1
[7] Jeong, C. and Sharma, R. (2022). Stochastic mpc for optimal operation of hydropower station under uncertainty, IFAC PapersOnLine, 2022. 55(7):155--160. doi:10.1016/j.ifacol.2022.07.437
[8] Jeong, C. and Sharma, R. (2022). Tuning model predictive control for rigorous operation of the dalsfoss hydropower plant, Energies (Basel), 2022. 15(22):8678. doi:10.3390/en15228678
[9] Jeong, C. and Sharma, R. (2023). Multistage model predictive control with simplified method on scenario ensembles of uncertainty for hjartdøla hydropower system, In 2023 IEEE Conference on Control Technology and Applications (CCTA). pages 733--740. doi:10.1109/CCTA54093.2023.10252685
[10] Klintberg, E., Dahl, J., Fredriksson, J., and Gros, S. (2016). An improved dual newton strategy for scenario-tree mpc, 2016 IEEE 55th Conference on Decision and Control (CDC). pages 3675--3681. doi:10.1109/CDC.2016.7798822
[11] Langhans, S.D., Jähnig, S.C., Lago, M., Schmidt-Kloiber, A., and Hein, T. (2019). The potential of ecosystem-based management to integrate biodiversity conservation and ecosystem service provision in aquatic ecosystems, The Science of the total environment. 672:1017--1020. doi:10.1016/j.scitotenv.2019.04.025
[12] Lucia, S., Finkler, T., and Engell, S. (2013). Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty, Journal of Process Control. 23(9):1306--1319. doi:10.1016/j.jprocont.2013.08.008
[13] Maiworm, M., Bäthge, T., and Findeisen, R. (2015). Scenario-based model predictive control: Recursive feasibility and stability, In IFAC-PapersOnLine, volume48. pages 50--56. doi:10.1016/j.ifacol.2015.08.156
[14] Martí, R., Lucia, S., Sarabia, D., Paulen, R., Engell, S., and dePrada, C. (2015). Improving scenario decomposition algorithms for robust nonlinear model predictive control, Computers & chemical engineering. 79:30--45. doi:10.1016/j.compchemeng.2015.04.024
[15] Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality, Automatica (Oxford). 36(6):789--814. doi:10.1016/S0005-1098(99)00214-9
[16] Mesbah, A. (2016). Stochastic model predictive control: An overview and perspectives for future research, IEEE control systems. 36(6):30--44. doi:10.1109/MCS.2016.2602087
[17] Morari, M. and Lee, J.H. (1999). Model predictive control : past, present and future, Computers & chemical engineering. 23(4-5):667--682. doi:10.1016/S0098-1354(98)00301-9
[18] NVE. (2022). Supervision of dams, (accessed: 24, 10.2022). https://www.nve.no/supervision-of-dams/?ref=mainmenu.
[19] Schmutz, S. and Sendzimir, J. (2018). Riverine Ecosystem Management : Science For Governing Towards a Sustainable Future (Volume 8, 0), volume8 of Aquatic Ecology Series. Springer Open, Cham. doi:10.1007/978-3-319-73250-3
[20] Scokaert, P. and Mayne, D. (1998). Min-max feedback model predictive control for constrained linear systems, IEEE transactions on automatic control. 43(8):1136--1142. doi:10.1109/9.704989
[21] SkagerakKraft. (2022). Kraftverk - kraftverksoversikt - hjartdøla, (accessed: 24, 10.2022). https://www.skagerakkraft.no/hjartdola/category1382.htm.

  title={{Stochastic Sequential Model Predictive Control for Operating Buffer Reservoir in Hjartdøla Hydropower System under Uncertainty}},
  author={Jeong, Changhun and Furenes, Beathe and Sharma, Roshan},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}