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Abstract

This study focuses on demonstrating the effectiveness and efficiency of the Stochastic Sequential Model
Predictive Control (MPC) framework within the context of the Hjartdøla hydropower system. Multistage
MPC, while effective in managing uncertainty, poses challenges due to its high computational demands
and complex optimal control problems, particularly in applications requiring long-term forecasting, such as
hydropower systems. Through a comparative simulation study with multistage MPC, this paper highlights
the superior feasibility and computational speed of the Stochastic Sequential MPC framework. This work
contributes to the broader understanding of MPC applications in hydropower systems

Keywords: Model predictive control, Stochastic MPC, Uncertainty, Flood management

1 Introduction

Hydropower, esteemed for its environmental bene-
fits(IEA, 2021), confronts challenges that can ad-
versely impact aquatic ecosystems within water-
courses(Schmutz and Sendzimir, 2018). Among these
challenges, hydropeaking, characterized by abrupt fluc-
tuations in discharged water flow rates from hy-
dropower turbines, poses a significant threat. Hy-
dropeaking incidents often result from operating hy-
dropower stations in response to fluctuating power de-
mand and can have devastating consequences on down-
stream fauna (Batalla et al., 2021).

To mitigate the ecological harm caused by hy-
dropeaking, the deployment of buffer reservoirs has
emerged as a viable solution. The primary objective of
buffer reservoirs is to regulate downstream flow rates
in a stable manner by temporarily storing or releas-
ing water (Langhans et al., 2019). However, managing
these buffer reservoirs is a formidable task due to the

presence of stringent operational regulations and in-
herent uncertainties. These uncertainties encompass
factors such as variations in power production plans
and fluctuations in water inflow originating from di-
verse streams and rivers.

The Hjartdøla hydropower system, situated in the
Hjartdal municipality of Norway and operated by Sk-
agerak Kraft, encounters similar challenges. This hy-
dropower facility, equipped with two Pelton turbines
and a buffer reservoir known as Hjartsj̊a, is specifically
designed to control downstream water flow rates. The
operational parameters of the Hjartdøla hydropower
plant entail constraints related to the water level at
Hjartsj̊a, flow rates through a floodgate, and down-
stream conditions. Furthermore, the system contends
with multiple sources of uncertainty, including varia-
tions in power production plans, uncertainties in water
inflow forecasts, and model-related uncertainties (Sk-
agerakKraft, 2022).
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Currently, the Hjartdøla system employs a
Proportional-Integral (PI) controller for system
control, supplemented by manual adjustments of
setpoints conducted by on-site personnel. However,
this control approach is suboptimal, as it heavily relies
on human judgment and predictive assessments of
uncertainty, thereby elevating the risk of violating
operational constraints. Consequently, Skagerak Kraft
AS is actively exploring the application of Model
Predictive Control (MPC) frameworks to enhance the
precision and efficiency of system control.

Model Predictive Control (MPC) has garnered sub-
stantial popularity across both industrial and research
domains, particularly for optimizing the operation of
constrained multiple-input multiple-output processes.
Its efficacy in managing multivariable systems subject
to constraints has led to successful implementations in
various industrial applications (Morari and Lee, 1999).
MPC involves computing an optimal control sequence
for the future by solving a finite horizon open-loop Op-
timal Control Problem (OCP) based on available sys-
tem information. Subsequently, the first control input
in the sequence is applied, and this procedure repeats
at regular sampling intervals (Mayne et al., 2000). No-
tably, MPC has demonstrated utility in addressing the
operational constraints of hydropower systems (Jeong
et al., 2021; Jeong and Sharma, 2022b), although chal-
lenges arise due to the inherent uncertainty associated
with water inflow to the reservoir, potentially leading
to constraint violations(Jeong et al., 2021).

To mitigate these constraint violations, address-
ing uncertainty becomes imperative when designing
and implementing MPC. One prominent approach is
Stochastic MPC, exemplified by the multistage MPC
or scenario-based MPC framework (Mesbah, 2016).
The genesis of this framework can be traced back to
the min-max feedback MPC concept introduced in
(Scokaert and Mayne, 1998) and later formalized as
multistage MPC by (Lucia et al., 2013). This frame-
work portrays future uncertainty evolution through a
discrete-time scenario tree and employs feedback mech-
anisms, facilitating closed-loop optimization. It tackles
the OCP across multiple control trajectories to account
for all plausible realizations of uncertainty. Multistage
MPC’s versatility has been showcased across diverse
domains, including chemical process systems(Lucia
et al., 2013; Mart́ı et al., 2015), autonomous ve-
hicles(Klintberg et al., 2016), building climate con-
trol(Maiworm et al., 2015), and notably, the manage-
ment of hydropower systems operating under uncer-
tain water inflow conditions (Jeong and Sharma, 2022a;
Jeong et al., 2023b; Jeong and Sharma, 2023). How-
ever, challenges persist in terms of computational de-
mands and the intricacy of the OCP structure.

To address these challenges inherent in multistage
MPC, the Stochastic Sequential MPC framework was
introduced in a prior study. This framework orches-
trates two sequential optimizations: an initial opti-
mizer akin to the certainty-equivalent MPC framework,
followed by a subsequent optimizer that aligns closely
with multistage MPC principles. Previous research
demonstrated the advantages of enhanced feasibility
and expedited computational efficiency in solving OCP,
highlighting the benefits of employing the Stochastic
Sequential MPC framework over traditional multistage
MPC approaches(Jeong et al., 2023a).

This paper endeavors to apply the Sequential
Stochastic Model Predictive Control (MPC) framework
to the Hjartdøla hydropower system and subsequently
assess its efficacy and efficiency in this context.

The paper’s organizational structure is as follows:
Section 2 offers an introduction to the Sequential
Stochastic MPC framework. In Section 3, the study
delves into the particulars of the case study and out-
lines the simulation configurations. Subsequently, Sec-
tion 4 is dedicated to the presentation of simulation
results, accompanied by a comprehensive discussion
of the findings. Finally, Section 5 encapsulates the
study’s conclusions.

2 STOCHASTIC SEQUENTIAL
MPC

The stochastic sequential MPC framework bears re-
semblance to human decision-making processes within
the context of long-term project management. In such
scenarios, an initial long-term plan is formulated based
on available resources, skills, and information, with-
out explicit consideration of future uncertainties. This
long-term plan serves as a foundational blueprint for
developing short-term action plans on a daily or weekly
basis. While the short-term plans align with the long-
term strategy, they also incorporate provisions for po-
tential issues or uncertainties that might arise. In
essence, the short-term plans strive to adhere as closely
as possible to the long-term plan, while concurrently
integrating contingency plans for unforeseen events.
This iterative planning approach facilitates the effec-
tive and efficient management of long-term projects
(Jeong et al., 2023a).

The framework of stochastic sequential MPC, as de-
picted in Figure 1, amalgamates characteristics from
both the certainty-equivalent MPC framework and
the multistage MPC framework. In this framework,
the first optimizer functions akin to the certainty-
equivalent MPC framework, generating a long-term
reference control sequence denoted as U∗

ref . This ref-
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Figure 1: The framework of Stochastic Sequential
MPC (Jeong et al., 2023a)

erence control sequence is computed over a prediction
horizon of length Np = ϕ1, predicated on nominal val-
ues of uncertainty denoted as θk, and the measured or
estimated system states denoted as x̂. Conversely, the
second optimizer resembles the multistage MPC frame-
work, producing short-term optimal control sequences
by considering presently available scenarios of uncer-
tainty in the future, denoted as dk, while also aiming
to track the long-term reference control sequence, U∗

ref ,
generated by the first optimizer. The optimal control
sequence within the second optimizer is computed over
a shorter prediction horizon of length Np = ϕ2, where
ϕ2 is significantly shorter than ϕ1 (Jeong et al., 2023a).

Despite not explicitly addressing uncertainty in the
distant future, the stochastic sequential MPC frame-
work incorporates future uncertainty information by
the second optimizer. Consequently, stochastic sequen-
tial MPC can achieve control performance akin to mul-
tistage MPC, while demanding less computational re-
sources and enhancing the feasibility of the optimal
control problem (Jeong et al., 2023a).

Let’s consider a discrete-time nonlinear system, de-
scribed by the following equation

xk+1 = f(xk,uk,dk) (1)

In this equation, xk ∈ Rnx represents the system states
at time step k, uk ∈ Rnu represents the control inputs
at the same time step, and dk denotes the ensemble of
scenarios representing uncertainty over the prediction
horizon, available at time step k. This relationship can
be expressed as:

dk =


d
(1)
k · · · d

(S)
k

...
. . .

...

d
(1)
k+Np

· · · d
(S)
k+Np

 (2)

Here, S represents the number of scenario ensembles,
with each column representing a distinct scenario en-
semble. The formulation of the first optimizer mirrors
that of the certainty-equivalent MPC, taking the fol-
lowing form:

minimize

ϕ1∑
k=0

J(xk,uk, θk) (3a)

subject to x0 = x̂, (3b)

xk+1 = f(xk,uk, θk), (3c)

g(xk,uk, θk) ≤ 0, (3d)

xlb ≤ xk ≤ xub, (3e)

ulb ≤ uk ≤ uub (3f)

Where θk represents the nominal value of the un-
certainty dk, and x̂ denotes the measured or estimated
states. The initial state for the optimization problem is
provided in equation (3b). The system model and out-
put constraints are integrated into equations (3c) and
(3d), respectively. The bounds on states and control
inputs are enforced through equations (3e) and (3f).
The prediction horizon length, denoted as Np, is set to
ϕ1 with k = 0, 1, . . . , ϕ1 (Jeong et al., 2023a).
As a result of the first optimization, the

reference control sequence is derived as
U∗

ref = [U∗
ref,1, . . . ,U

∗
ref,ϕ2

, . . . ,U∗
ref,ϕ1

]. A por-
tion of this reference control sequence, specifically
[U∗

ref,1, . . . ,U
∗
ref,ϕ2

], is passed to the second optimizer.
The formulation of the second optimizer closely
resembles that of the multistage MPC framework,
taking the following form:

minimize

S∑
j=1

ωj

ϕ2∑
k=0

J(xj
k,u

j
k,d

j
k) +Qu(u

j
k −U∗

ref,k)
2

(4a)

subject to xj
0 = x̂, (4b)

xj
k+1 = f(xj

k,u
j
k,d

j
k), (4c)

g(xj
k,u

j
k,d

j
k) ≤ 0, (4d)

xlb ≤ xj
k ≤ xub, (4e)

ulb ≤ uj
k ≤ uub, (4f)

uj
k = ul

k if x
p(j)
k = x

p(l)
k (4g)

In this context, Qu serves as a weight parameter gov-
erning the tracking of the reference control sequence,

43



Modeling, Identification and Control

Table 1: Parameters for Lake Toke model

Parameter Value Unit Comment
LRV 155.7 m MSL Lower regulated value
HRV 157.5 m MSL Higher regulated value
hin,max HRV + 3− LRV = 4.8 m Maximum water level of the buffer reservoir (Hjartsj̊a)
Amin 103 m2 Minimum surface area of water in the buffer reservoir (Hjartsj̊a)
a 0.0474 - Coefficient
b 1.6898 - Coefficient

hmsl
g,top 157.37 m MSL Top position of gate opening
L1 12 m Width of the gate
L2 11 m Width of the overflow channel

OFTmsl
1 157.5 m MSL Overflow threshold 1

OFTmsl
2 158.5 m MSL Overflow threshold 2

while ωj represents the weight or probability associated
with the jth scenario ensemble (Jeong et al., 2023a).

The initial states for all scenario ensembles in the op-
timization problem are provided by equation (4b). The
system model and output constraints are integrated
into equations (4c) and (4d), respectively. Bounds on
states and control inputs are enforced through equa-
tions (4e) and (4f) (Jeong et al., 2023a).

The non-anticipativity constraint, as articulated in
(4g), ensures that the same control inputs are applied
at parent nodes where scenarios branch out. Here, l
represents a scenario number distinct from j. The pre-
diction horizon Np is set as ϕ2, which is shorter than
ϕ1, with k = 0, 1, . . . , ϕ2. Consequently, a new optimal
control sequence is computed over the horizon length
ϕ2 and its first control input is applied to the system
(Jeong et al., 2023a).

For a system characterized by nx states and nu

control inputs, the multistage MPC framework ne-
cessitates solving an Optimization Control Problem
(OCP) with (nx + nu) · Np · S variables. Here, S
denotes the number of available scenarios of uncer-
tainty over the prediction horizon length Np. In con-
trast, the stochastic sequential MPC framework ad-
dresses two OCPs sequentially. The first OCP involves
(nx+nu) ·Np variables, while the second OCP encom-
passes (nx + nu) · ϕ2 · S variables. Consequently, the
sizes of the OCPs in stochastic sequential MPC are re-
duced by factors of 1/S and ϕ2/Np compared to one in
multistage MPC, resulting in decreased computational
demands (Jeong et al., 2023a).

3 CASE STUDY

3.1 System description

Hjardøla hydropower plant has two Pelton turbines of
60MW each. After the turbines, there is a buffer reser-

Figure 2: The simple layout of the watercourse system
at Hjartdøla hydropower plant

voir, called Hjartsj̊a, which is used to control the water
flow rate at downstream SkagerakKraft (2022). Fig-
ure. 2 displays a layout of the Hjartdøla hydropower
system and Figure. 3 shows the structure of the
Hjartsj̊a buffer reservoir. The water flows into Hjartsj̊a
from two places: the Hjartdøla hydropower turbines
V̇p and Hjartsj̊a river V̇i,H. The water flows out from

Hjartsj̊a through a floodgate V̇g and flood threshold
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Figure 3: The structure of the Hjartsj̊a reservoir

Figure 4: The structure of the floodgate at Hjartsj̊a
reservoir

walls V̇f . Figure. 4 shows the structure of the flood-
gate at the reservoir. The water flows toward Om-
nessfossen located in downstream. Between Hjartsj̊a
and Omnessfossen, three main rivers flow into the wa-
tercourse: Skorva river V̇i,SV, Skogs̊åa river V̇i,SS, and

Mjella river V̇i,M. The system has two types of un-
certainties: the power production plan and the water
inflow forecasts from all four rivers. The flow rate fore-
casts of all rivers are computed based on hydrological
models of the rivers and weather forecast information.
Each forecast has 50 possible scenario ensembles for
the next 13 days (312 hours). The power production
plan is the result of the optimization of factors such as
electricity price, demand, etc. During the operation,
it is important to consider all forecast information to
avoid drastic changes in flow rates.

In the model, the state is the water level at the reser-
voir h, and the control input is the gate opening hg.
The parameters of the model are specified in Table. 1
and the model is as follows:

hin = min(max(0, h− LRV ), hin,max) (5)

A(hin) = max(Amin, 10
6 · a · b · h(b−1)

in ) (6)

hout,g = max(0, h− (hmsl
g,top − hg)) (7)

V̇g = 1.84 · L1 · h1.5
out,g (8)

hout,OF1 = max(0, h−OFTmsl
1 ) (9)

hout,OF2 = max(0, h−OFTmsl
2 ) (10)

V̇f = 1.8(L1 · h1.5
out,OF1 + L2 · h1.5

out,OF2) (11)

V̇O = V̇g + V̇f + V̇i,SV + V̇i,SS + V̇i,M (12)

dh

dt
=

1

A(hin)
(V̇i,H + V̇p − V̇f − V̇g) (13)

Operational constraints are designed to achieve (i)
operational safety and (ii) prevention of damage to
the environment at downstream. The constraints are
regulated by the Norwegian Water Resource and En-
ergy Administration (NVE). The violation of the con-
straints can cause an enormous fine and other sorts of
penalties NVE (2022). Therefore, the constraints must
be satisfied. The essential constraints are:

1. The flow rate of the water at down-
stream(Omnessfossen) must be as steady as
possible. This requirement is to keep the fauna
and people at downstream safe from hydropeaking
or the sudden change in the flow rates or levels at
downstream.

2. The water flowing out from the Hjartsj̊a reservoir
should be more than 1.0 m3/s and more than 2.5
m3/s at Omnessfossen. This ensures that fish can
move freely in the watercourse.

3. The water level at the Hjartsj̊a reservoir must be
maintained between HRV and LRV .

3.2 Optimal control problems

The main purpose of the buffer reservoir is to keep
the water flow at downstream as constant as possible.
Also, it may be beneficial to keep the water level in the
reservoir as high as possible because it gives flexibility
to the operation. For example, during the dry sea-
son, the reservoir can supply enough water for a longer
period to satisfy the required minimum flow rate. The
first optimizer computes the reference control sequence
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with the nominal value of the water inflows. The ob-
jective function for the first optimizer is formulated as:

J1,k = Lk +∆Rk +∆V Ok (14)

Lk = (hk −HRV ) ·Qh · (hk −HRV )⊺ (15)

∆Rk = (uk − uk−1) ·Q∆u · (uk − uk−1)
⊺ (16)

∆V Ok = ∆V̇ k
O ·QV ·∆V̇ k⊺

O (17)

Equation (15) aims to maximize the water level in
the buffer reservoir. Equations (16) and (17) inhibit
the changes in the floodgate opening and the flow rate
at downstream(Omnessfossen). The OCP of the first
optimizer is formed as:

minimize

ϕ1∑
k=0

J1,k (18a)

subject to h0 = ĥ, (18b)

hk+1 = f(hk, hg,k,mean(V̇ j
i,H)), (18c)

1.0m3/s ≤ V̇g,k, (18d)

2.5m3/s ≤ V̇O,k, (18e)

LRV ≤ hk ≤ HRV, (18f)

0 ≤ hg,k ≤ 1.5m (18g)

In the second optimizer, the uncertainty of water
inflow is included in the optimization and the tracking
term to the reference control sequence is added. The
objective function of the second optimizer is formulated
as:

J2,k = Jj
1,k +Qu(u

j
k −U∗

ref,k)
2 (19)

OCP for the second optimizer is formulated as:

minimize

S∑
j=1

ωj

ϕ2∑
k=0

J2,k (20a)

subject to hj
0 = ĥ, (20b)

hj
k+1 = f(hj

k, h
j
g,k, V̇

j
i,H), (20c)

1.0m3/s ≤ V̇g,k, (20d)

2.5m3/s ≤ V̇O,k, (20e)

LRV ≤ hj
k ≤ HRV, (20f)

0 ≤ hj
g,k ≤ 1.5m, (20g)

h1
g,1 = h2

g,1 = · · · = hS
g,1 = 0 (20h)

The non-anticipative constraint, (20h), stands only
in the first time step, k = 1. It is because the given
scenario ensembles of the water inflow are independent
of each other. Therefore, the only initial state is a par-
ent node. The weighting parameters in the objective
function are set as shown in Table 2.

Table 2: Weight parameters in objective function

Parameter 1st optimizer 2nd optimizer
Qh 1 1
Q∆u 100 0
QV 1000 0
Qu - 100

3.3 Simulation setup

For the simulation, the actual water inflow prediction
and the historical power production plan data, stored
by Skagerak Kraft, are used. Figure. 5 and Figure. 6
show the structure of the water inflow forecast and the
historical power production plan. While all 50 sce-
nario ensembles of inflow of Hjartsj̊a river are consid-
ered, the water inflow predictions of the three rivers
between the reservoir and Omnessfossen(downstream)
are simplified by considering the possible scenario of
minimum flow rates.

0 2 4 6 8 10 12

Time [day]

2

4

6

8

10

F
lo

w
ra

te
 [
m

3
/s

]

Figure 5: One example of the water inflow forecast
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Figure 6: Historical water flow rate through the tur-
bines for power production

For the simulation, the perfect model and the perfect
prediction in power production are assumed. The sim-
ulation period is 5 days (144 hours) and the time step is
set as 1 hour. The simulation is performed on CasAdi
in Python Andersson et al. (2019). In the simulation,
four different MPCs are tested as follows:

46



Jeong et al., “Utilization of Sequential Stochastic MPC”

1. Certainty-equivalent MPC: the prediction
horizon length is set as 13 days (312 hours) and
utilizes the mean value of the water inflow forecast
for the prediction of water inflow.

2. Multistage MPC (MS13d): the prediction
horizon length is set as 13 days (312 hours) and
considers all the scenario ensembles for the opti-
mization.

3. Multistage MPC (MS6h); the prediction hori-
zon length is set as 6 hours and considers all the
scenario ensembles for the optimization.

4. Stochastic Sequential MPC (Seq): the first
optimizer has 13 days (312 hours) of the predic-
tion horizon length and utilizes the mean value
of the water inflow forecast to compute the refer-
ence control sequence. The second optimizer has
6 hours of the prediction horizon and considers all
the possible scenarios of the water inflow for the
optimization.

To assess the potential violations of the constraints
by the realization of the different scenarios from the
prediction, the open-loop robustness analysis is con-
ducted. The process of the analysis is shown in Fig-
ure. 7. In the open-loop robustness analysis, the model
is updated with the computed optimal control input
and different water inflow from all the scenarios in an
open-loop manner and checks whether the constraints
are violated or not in the subsequent time step.

Figure 7: The procedure of open-loop robustness anal-
ysis

4 Simulation results and Discussion

Figure. 8 depicts the time-varying flow rate at the
downstream location during the simulation period
when the buffer reservoir is assumed to be absent. The
figure highlights the occurrence of multiple hydropeak-
ing events during the relatively short simulation pe-
riod. To mitigate the potential damage caused by hy-
dropeaking, it is imperative to optimize the operation
of the buffer reservoir.
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Figure 8: The flow rate at downstream under the as-
sumption that a buffer reservoir does not ex-
ist

Figure 9: The result of the open-loop robustness anal-
ysis when the certainty equivalent MPC is
implemented with the nominal values of the
water inflow forecast

The simulation result of the certainty equivalent
MPC and the open-loop robustness analysis is illus-
trated in Figure. 9, exhibiting the potential constraint
violations at certain instances during the simulation
period. It shows all the possible water level changes
from all 50 possible scenario ensembles of water inflow.
There are potential dangers of the constraint violations
at 65 hours, 92 hours, 117 hours, and 131 hours dur-
ing the simulation period. Although the water level
surpasses the bound by small amounts, it is intolera-
ble. However, these potential constraint violations are
eliminated in the implementation of both the multi-
stage MPC framework and the stochastic sequential
MPC framework.
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Figure. 10 shows the simulation results of three other
MPC frameworks: the stochastic sequential MPC
framework(Seq), the multistage MPC with 13 days of
the prediction horizon length(MS13d), and the mul-
tistage MPC with 6 hours of the prediction horizon
length (MS6h). Figure. 10(a) displays how the water
level changes throughout the simulation period, Fig-
ure. 10(b) displays the gate openings (control input)
throughout the simulation period, and Figure. 10(c)
displays the flow rate at the downstream(Omnesfossen)
during the simulation. The results of the sequential
stochastic MPC are almost identical to that of the mul-
tistage MPC with 13 days of the prediction horizon
length. For a fair comparison, the multistage MPC
with 6 hours of the prediction horizon length (which
is also equal to the prediction horizon length of the
second optimizer for the sequential stochastic MPC)
is displayed but it shows poor management of the wa-
ter level, and the flow rate at downstream. The wa-
ter level is unnecessarily lowered and the flow rate at
downstream is not controlled constantly. It shows the
importance of tracking the reference control sequence.

Table 3: The detail of computational time for each
framework [s]

MPC Mean Max Min
Certainty Equivalent 0.2804 0.6006 0.2128
Stochastic Sequential 0.3081 0.6246 0.2513
Multistage 13 days 27.09 68.65 13.87
Multistage 6 hours 0.1439 0.6497 0.0812

Table. 3 presents a comparison of the computational
time required, in seconds, for solving each iteration of
the optimization problem of the multistage MPC and
stochastic sequential MPC for the buffer reservoir op-
eration problem. It is observed that the stochastic se-
quential MPC reduces the computational time by 87
times compared to the multistage MPC with the pre-
diction horizon length set to 13 days. Moreover, de-
spite considering all 50 possible scenario ensembles, the
computation time of the stochastic sequential MPC is
found to be comparable to that of the certainty equiv-
alent MPC.

Figure.11 demonstrates how the second optimization
mitigates the impact of uncertainty. Specifically, Fig-
ure.11(a) displays the first control inputs of the control
sequences from the first optimizer and the second op-
timizer of the stochastic sequential MPC framework
during the simulation period. It reveals that there is
no significant difference between the two control se-
quences, which is reasonable since the second opti-
mizer is designed to track the reference control se-
quence from the first optimizer. However, when the
first control inputs of the second optimizer are sub-
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Figure 10: The comparison of the simulation re-
sults among the stochastic sequential MPC
(Seq), the multistage MPC with differ-
ent prediction horizon lengths of 6 hours
(MS6h) and 13 days(MS13d): (a)The
level changes throughout the simulation
period, (b)The gate openings through-
out the simulation period, and (c)The
flow rate of the water at the down-
stream(Omnessfossen)

tracted from the first optimizer’s first control inputs,
as shown in Figure.11(b), it becomes apparent that the
second optimizer increases the gate opening in certain
instances. Notably, these instances align with the mo-
ments when the open-loop robustness analysis of the
certainty equivalent MPC, shown in Figure.9, detects
potential constraint violations. This finding confirms
that the second optimizer adjusts the control sequence
slightly to mitigate the impact of uncertainty effec-
tively when required and when there is a possibility
of violating constraints.

In flooding situations, the deviation of water inflow
from one scenario to another increase significantly in
the further future over the prediction horizon, leading
to the potential infeasibility of OCP and, consequently,
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Figure 11: (a)The first control input from the first opti-
mization and the second optimization of the
stochastic sequential MPC framework, and
(b)The difference of the first control input
between the first and second optimization
(The second optimization - the first opti-
mization)
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Figure 12: Simulation results of the stochastic sequen-
tial MPC(Prediction horizon: 1st opti-
mizer:13days, 2nd optimizer:6hr) and multi-
stage MPC(Prediction horizon: 13days) un-
der assumption of the severe flooding sit-
uation. (a)The water level at the reser-
voir throughout the simulation period, and
(b)The applied control inputs throughout
the simulation period

unreasonable control actions. The simulation results
of the stochastic sequential MPC and multistage MPC
under severe flooding conditions are presented in Fig-
ure. 12. The results indicate that the multistage MPC
fails to find an optimal solution, as the computation
of OCP becomes infeasible, resulting in an inability to
maximize the water level as desired. In contrast, the
stochastic sequential MPC manages to find the optimal
solution of OCP and effectively control the system in
the desired manner. This highlights the better feasibil-
ity of the stochastic sequential MPC in solving OCP as
it does not consider the deviations of the water inflow
in the long-term future, which can be compensated by
the feedback control concept.

5 Conclusion

This study utilizes the stochastic sequential MPC
framework for controlling the buffer reservoir in the
Hjartdøla hydropower system under uncertainty. Com-
pared to the certainty equivalent MPC, which fails
to account for uncertainty, and the multistage MPC,
which has slower computation time, the stochastic se-
quential MPC effectively handles uncertainty and en-
sures that no constraint violations occur. The second
optimizer in the stochastic sequential MPC framework
is shown to counteract the influence of uncertainty
by slightly adjusting the control sequence when neces-
sary, as evidenced by simulation results. Moreover, the
stochastic sequential MPC demonstrates significantly
faster computation time in Table. 3 and better feasi-
bility in solving OCP in the severe flooding situation.
These advantages are attributed to the first optimizer
providing a reference control sequence to the second
optimizer, which reduces computational demand while
reflecting the trend of future uncertainty information.
Overall, the results suggest that the stochastic sequen-
tial MPC framework is a promising approach for real-
time control of hydropower systems under uncertainty.
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