“Finding Clusters in Petri Nets. An approach based on GPenSIM”

Authors: Reggie Davidrajuh, Damian Krenczyk and Bozena Skolud,
Affiliation: University of Stavanger and Silesian University of Technology
Reference: 2019, Vol 40, No 1, pp. 1-10.

Keywords: Clusters, peer-pressure method, Petri Nets, GPenSIM, Flexible Manufacturing System

Abstract: Graph theory provides some methods for finding clusters in networks. Clusters reflect the invisible grouping of the elements in a network. This paper presents a new method for finding clusters in networks. In this method, the user can adjust a parameter to change the number of clusters. This method is newly added to the simulator General-purpose Petri Net Simulator (GPenSIM) as a function for network analysis. With this GPenSIM function, in addition to the usual performance analysis of a discrete-event system via a Petri net model, supplementary information about the grouping of the elements can also be found. Finding clusters in discrete-event systems provides valuable information such as the ideal location of the elements in a manufacturing network. This paper also presents an application example on a flexible manufacturing system.

PDF PDF (744 Kb)        DOI: 10.4173/mic.2019.1.1

References:
[1] Abbaszadeh, A., Abedi, M., and Doustmohammadi, A. (2018). Abbaszadeh, A, , Abedi, M., and Doustmohammadi, A. General stochastic petri net approach for the estimation of power system restoration duration. International Transactions on Electrical Energy Systems. 28(6):e2550. doi:10.1002/etep.2550
[2] Bi, Z.M., Lang, S. Y.T., Shen, W., and Wang, L. (2008). Bi, Z, M., Lang, S. Y.T., Shen, W., and Wang, L. Reconfigurable manufacturing systems: the state of the art. International Journal of Production Research. 46(4):967--992. doi:10.1080/00207540600905646
[3] Cameron, A., Stumptner, M., Nandagopal, N., Mayer, W., and Mansell, T. (2015). Cameron, A, , Stumptner, M., Nandagopal, N., Mayer, W., and Mansell, T. Rule-based peer-to-peer framework for decentralised real-time service oriented architectures. Science of Computer Programming. 97:202 -- 234. doi:10.1016/j.scico.2014.06.005
[4] Complete Code for the example. (0). Complete Code for the example, 2019. http://www.davidrajuh.net/gpensim/Pub/2019/MIC/, Accessed on 07 January 2019. .
[5] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). Cormen, T, H., Leiserson, C.E., Rivest, R.L., and Stein, C. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition. .
[6] Davidrajuh, R. (2008). Davidrajuh, R, Developing a new petri net tool for simulation of discrete event systems. In 2008 Second Asia International Conference on Modelling Simulation (AMS). pages 861--866. doi:10.1109/AMS.2008.13
[7] Davidrajuh, R. (2018). Davidrajuh, R, Modeling Discrete-Event Systems with GPenSIM. Springer International Publishing, Cham. doi:10.1007/978-3-319-73102-5
[8] Davidrajuh, R., Skolud, B., and Krenczyk, D. (2018). Davidrajuh, R, , Skolud, B., and Krenczyk, D. Gpensim for performance evaluation of event graphs. In Advances in Manufacturing, number 201519 in Lecture Notes in Mechanical Engineering. Springer International Publishing, Cham, pages 289--299, 2018. doi:10.1007/978-3-319-68619-6_28
[9] Davidrajuh, R., Skolud, B., and Krenczyk, D. (2018). Davidrajuh, R, , Skolud, B., and Krenczyk, D. Performance evaluation of discrete event systems with gpensim. Computers, 2018. 7(1):8. doi:10.3390/computers7010008
[10] van Dongen, S. (2000). van Dongen, S, Graph Clustering by Flow Simulation. Ph.D. thesis, University of Utrecht. .
[11] Gilbert, J.R., Reinhardt, S., and Shah, V.B. (2007). Gilbert, J, R., Reinhardt, S., and Shah, V.B. High-performance graph algorithms from parallel sparse matrices. In Proceedings of the 8th International Conference on Applied Parallel Computing: State of the Art in Scientific Computing, PARA'06. Springer-Verlag, pages 260--269. doi:10.1007/978-3-540-75755-9_32
[12] GPenSIM: A General Purpose Petri Net Simulator. (0). GPenSIM: A General Purpose Petri Net Simulator, 2019. http://www.davidrajuh.net/gpensim, Accessed on 07 January 2019. .
[13] Hermann, M., Pentek, T., and Otto, B. (2016). Hermann, M, , Pentek, T., and Otto, B. Design principles for industrie 4.0 scenarios. In Proceedings of the Annual Hawaii International Conference on System Sciences, volume 2016-March. pages 3928--3937. doi:10.1109/HICSS.2016.488
[14] Jyothi, S.D. (2012). Jyothi, S, D. Scheduling flexible manufacturing system using petri-nets and genetic algorithm. Department of Aerospace Engineering, Indian Institute of Space Science and Technology: Thiruvananthapuram, India. .
[15] Kepner, J. and Gilbert, J. (2011). Kepner, J, and Gilbert, J. Graph algorithms in the language of linear algebra. SIAM. doi:10.1137/1.9780898719918
[16] Kioon, S.A., Bulgak, A.A., and Bektas, T. (2009). Kioon, S, A., Bulgak, A.A., and Bektas, T. Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration. European Journal of Operational Research. 192(2):414 -- 428. doi:10.1016/j.ejor.2007.09.023
[17] Krenczyk, D., Skolud, B., and Herok, A. (2018). Krenczyk, D, , Skolud, B., and Herok, A. A heuristic and simulation hybrid approach for mixed and multi model assembly line balancing. In Intelligent Systems in Production Engineering and Maintenance -- ISPEM 2017, volume 637 of Advances in Intelligent Systems and Computing. Springer International Publishing, Cham, pages 99--108. doi:10.1007/978-3-319-64465-3_10
[18] Krivanek, M. and Moravek, J. (1986). Krivanek, M, and Moravek, J. Np-hard problems in hierarchical-tree clustering. Acta Informatica. 23(3):311--323. doi:10.1007/BF00289116
[19] Mutarraf, U., Barkaoui, K., Li, Z., Wu, N., and Qu, T. (2018). Mutarraf, U, , Barkaoui, K., Li, Z., Wu, N., and Qu, T. Transformation of business process model and notation models onto petri nets and their analysis. Advances in Mechanical Engineering. 10(12):1687814018808170. doi:10.1177/1687814018808170
[20] Neumann, M., Constantinescu, C., and Westkämper, E. (2012). Neumann, M, , Constantinescu, C., and Westkämper, E. Method for multi-scale modeling and simulation of assembly systems. Procedia CIRP. 3:406 -- 411. doi:10.1016/j.procir.2012.07.070
[21] Peterson, J.L. (1981). Peterson, J, L. Petri net theory and the modeling of systems. Prentice Hall PTR. .
[22] Robinson, E. (2011). Robinson, E, 6. complex graph algorithms. In J.Kepner and J.Gilbert, editors, Graph Algorithms in the Language of Linear Algebra, pages 59--84. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898719918.ch6


BibTeX:
@article{MIC-2019-1-1,
  title={{Finding Clusters in Petri Nets. An approach based on GPenSIM}},
  author={Davidrajuh, Reggie and Krenczyk, Damian and Skolud, Bozena},
  journal={Modeling, Identification and Control},
  volume={40},
  number={1},
  pages={1--10},
  year={2019},
  doi={10.4173/mic.2019.1.1},
  publisher={Norwegian Society of Automatic Control}
};