
Modeling, Identification and Control, Vol. 40, No. 1, 2019, pp. 1–10, ISSN 1890–1328

Finding Clusters in Petri Nets
An approach based on GPenSIM

R. Davidrajuh 1 D. Krenczyk 2 B. Skolud 2

1Electrical and Computer Engineering, University of Stavanger, N-4036 Stavanger, Norway.
E-mail: reggie.davidarjuh@uis.no

2Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland.
E-mail: {damian.krenczyk,bozena.skolud}@polsl.pl

Abstract

Graph theory provides some methods for finding clusters in networks. Clusters reflect the invisible grouping
of the elements in a network. This paper presents a new method for finding clusters in networks. In this
method, the user can adjust a parameter to change the number of clusters. This method is newly added to
the simulator General-purpose Petri Net Simulator (GPenSIM) as a function for network analysis. With
this GPenSIM function, in addition to the usual performance analysis of a discrete-event system via a Petri
net model, supplementary information about the grouping of the elements can also be found. Finding
clusters in discrete-event systems provides valuable information such as the ideal location of the elements
in a manufacturing network. This paper also presents an application example on a flexible manufacturing
system.

Keywords: Clusters, peer-pressure method, Petri Nets, GPenSIM, Flexible Manufacturing System

1 Introduction

Finding clusters in a manufacturing network is a very
useful thing to do. This is because clustering finds
groups in a network where the elements within a group
are connected with each other somehow. It is usual to
group elements of a network into clusters based on their
functional belonging. This technique is known as the
logical clustering. For example, in an automobile man-
ufacturing facility, the manufacturing elements can be
grouped into painting cluster, engine assembly clusters,
and electrical installation cluster. Apart from the logi-
cal clustering, graph theory provides some methods for
finding clusters in networks by analyzing the static net-
work. For example, Peer-pressure method (Kepner and
Gilbert, 2011) and Markov clustering (Peterson, 1981)
analyze the static network based on how the elements
(nodes) in the graph are connected.

This paper focuses on finding clusters in Petri nets.

Petri net is a bipartite graph which is widely used for
modeling, simulation and (supervisor-based) control of
discrete-event systems (Peterson, 1981). Finding clus-
ters in Petri nets possesses an additional advantage:
in addition to the usual performance analysis of Petri
nets through simulations, static cluster analysis can
also be done on the Petri net. Performing both static
and dynamic analysis of a discrete-event system paves
a deeper understanding of the system. For example,
dynamic analysis can identify the elements that are
the bottlenecks in the system, whereas static cluster
analysis can show how these elements are grouped to-
gether.

In this paper, the software General-purpose
Petri Net Simulator (GPenSIM) (Davidrajuh, 2018;
Davidrajuh et al., 2018b) is used for both static and
dynamic analysis of discrete-event systems (e.g., man-
ufacturing networks); GPenSIM is developed by the
first author of this paper. GPenSIM is used in the

doi:10.4173/mic.2019.1.1 c© 2019 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2019.1.1


Modeling, Identification and Control

literature for dynamic analysis of a variety of discrete-
event systems (Abbaszadeh et al., 2018; Cameron et al.,
2015; Jyothi, 2012; Mutarraf et al., 2018). This paper
is the first attempt to perform static cluster analysis
with GPenSIM.

The originality of this paper: This paper proposes an
extension the Peer-pressure method so that the number
of clusters in a network can be varied by the user. The
theoretical work towards this extension and its imple-
mentation as a function of the GPenSIM software can
be considered as the original work of this paper.

In this paper: Section-II introduces GPenSIM as a
tool for modeling, simulation, and performance eval-
uation of discrete-event systems, based on Petri net
models. Section-III is about static cluster analysis us-
ing the peer-pressure method. Section-IV describes the
new extension to the peer-pressure method. Section-V
presents the GPenSIM functions for cluster analysis.
Section-VI presents an application example on flexible
manufacturing system. The simulation results from the
cluster analysis are discussed in section-VII.

2 Introduction To GPenSIM

General-purpose Petri net simulator (GPenSIM) is a
toolbox on MATLAB platform which can be used for
modeling, simulation, performance analysis, and con-
trol of discrete-event systems. GPenSIM is relatively
new software as it was introduced in 2016 as version
9; the current version is v10. GPenSIM is already be-
ing used by some universities around the world, e.g.,
in Australia, China, Korea, and the USA. The rea-
sons being the simplicity of learning and using, and its
flexibility to incorporate newer functionality (Davidra-
juh, 2018; Davidrajuh et al., 2018b; Abbaszadeh et al.,
2018; Cameron et al., 2015; Jyothi, 2012; Mutarraf
et al., 2018).

Implementing a Petri net model with GPenSIM
usually happens via four M-files (Davidrajuh, 2018;
Davidrajuh et al., 2018b):

1. Petri net Definition File (PDF): A PDF declares
the static Petri net graph: the set of places, the
set of transitions, and the set of arcs are declared
in this file.

2. Main Simulation File (MSF): The MSF declares
the initial dynamics (e.g., initial tokens in the
places, firing times of the transitions, firing costs of
the transitions) and runs the simulations. When
the simulation terminates, the code for plotting
and printing the simulation results are also coded
in this file.

3. The pre-processor file (COMMON PRE): If there
are additional conditions for the enabled transi-
tions to satisfy before firing, these conditions are
coded in the COMMON PRE file.

4. The post-processor file (COMMON POST): If
there are any post-firing actions to be performed
after firing of transitions, these actions can be
coded in the COMMON POST file.

For static analysis of Petri nets, we need only the
files MSF and PDF. This is because the pre- and post-
processor files are for run-time simulations (dynamic
analysis).

3 Cluster analysis: The basics

Finding clusters (aka graph clustering) in a network is
determining groups of nodes that are highly connected
with each other. Clusters are similar but different
to components (or strongly connected components);
in a strongly connected component, any two nodes
within the component must be connected in both di-
rections (Cormen et al., 2009). There are many meth-
ods for finding clusters, starting with older and less
efficient random walks based methods (Křivánek and
Morávek, 1986) to modern and efficient peer-pressure
based (Gilbert et al., 2007) and flow-based methods
(van Dongen, 2000).

3.1 Peer-pressure based clustering

The peer-pressure based method focuses on the pulling
power (aka votes) of the neighbors. A node can be
pulled by many clusters surrounding it. This node
will join the cluster that possesses the highest pulling
power.

The pull experienced by a node is the incoming edges
to the node. The pulling strength of a cluster is the
incoming edges from the nodes of that cluster to this
particular node.

Peer pressure clustering is an iterative method, re-
peatedly calculating the pulls experienced by the indi-
vidual nodes and allocating them to different clusters
according to the pull strength. The method stops when
the movements of nodes between the clusters converge
(stabilize) meaning there is no movement in successive
iterations.

3.2 The Peer-Pressure Algorithm

The peer-pressure algorithm is described in (Robinson,
2011). The algorithm is shown in Figure 1. The follow-
ing matrices and vectors are involved in the algorithm:

2



Davidrajuh et.al., “Finding Clusters in Petri Nets”

Figure 1: Peer pressure algorithm (based on (Robinson, 2011))

• The network is represented by its weighted adja-
cency matrix A.

• C is the matrix representing the current cluster
formations; each row vector Ci of C is a cluster.
If the element cik == 1 means node k is in the
cluster i. Note that Ci need not be unique, as
there can be Cj == Ci for i 6= j.

• Computing the pulling strength is given by T =
CA, where tij is the pulling strength of cluster i
on node j. After computing T , node j will move to
cluster l as tlj is the maximum on the j-th column
of T .

• New belonging and Old belonging are vectors in
which vi == m means node i belongs to cluster
m. New belonging represents the cluster mem-
bership computed in the current iteration, and
Old belonging is from the previous iteration.

The algorithm starts with an initialization step (not
shown in Figure 1) in which each node becomes an
individual cluster (each node is in a cluster by itself).
Thus, during the initialization C == I (the identity
matrix) as the node number and the cluster number
will be equal.

After the initial step starts the iterations, as depicted
in the lines 1-16 in Figure 1. The iterations terminate
(line 2) when there is no change in the cluster composi-
tion (clusters are the same in two successive iterations).

During an iteration, the pulling strength experienced
by each node is computed (line 4). In the lines 5-9, the
maximum pull for each is node is computed. Finally,
each node moves to the cluster that exerted the maxi-
mum pull (lines 10-16).

There are some enhancements to the peer-pressure
algorithm. Some of these enhancements are democratic

voting (all the nodes possess only one vote immaterial
of their out-degrees) and Anti-bullying (just like in-
dividual nodes, all clusters possess the same pulling
strength immaterial of their membership size). An-
other enhancement is favoring smaller cluster if a node
is pulled by several clusters all with the same strength.
For more details, the interested reader is referred to
(Robinson, 2011).

3.3 Running Time and Space Complexity

Running Time: Peer pressure algorithm is not guar-
anteed to converge (Robinson, 2011). This means the
loops have to be terminated after some iterations (usu-
ally equal to the number of nodes N). During an
iteration, there are three code blocks that dominate
the computations: The matrix multiplication T = CA
with running time O(N3), and two for-loops with run-
ning time of O(N). Thus the running time for a single
iteration will be O(N3). Considering O(N) iterations,
the running time of the algorithm becomes O(N4).
Space complexity: the algorithm maintains two vec-
tors (Old belonging and New belonging) of length N
and three matrices (A, C, and T ) of dimension RN×N .
Thus, the space requirement is low, and hence the
memory utilization is efficient.

4 Extension to Peer pressure
algorithm

In this section, we propose a simple yet powerful ex-
tension to the peer pressure algorithm. The extension
is to allow the user to determine the sizes of the clus-
ters. For example, a user may prefer a large number of
small clusters or a small number of large clusters. The
proposed extension allows the user to vary the size and

3



Modeling, Identification and Control

the number of clusters, through the introduction of the
parameter called ”self-loop strength”.

4.1 Parameter ”Self-loop Strength”

The peer pressure algorithm adds self-loop to each node
to make the algorithm converge; self-loop (aka self-
edge) means there is an arc emerging from each node to
itself. The addition of self-loops is done by making the
diagonal elements of the incidence matrix A become
one. A = A+ I.

As an extension, the self-loop strength (represented
by β) of the nodes need not be one but can be a real
value: β ∈ R+. Thus, the extension becomes:

A = A+ (β × I). (1)

4.2 The influence of ”Self-Loop”

It is a fundamental assumption in the peer-pressure al-
gorithms that each node can exert a total pulling pres-
sure of singleton (1). For example, a node P that has
only one outgoing arc and a node Q that has ten outgo-
ing arcs would possess the same total pulling pressure
of 1. However, the sole outgoing arc of P will take
the total pressure of 1, whereas, in Q, every ten outgo-
ing arcs (assuming that all the ten arcs have a unit arc
weight) have to share the total pulling pressure Q; thus
each outgoing arc of Q will exert a pressure of 1/10 =
0.1.

Let us consider the nodes X and Y as shown in Fig-
ure 2. Let us assume that the nodes have outdegree
(number of outgoing arcs) of m and n, respectively.

X

x1

x3xi

β

xm

Y

y1

y3 yi

yn
x2

y2

β 

Figure 2: Peer-pressure dynamics between two nodes

Since X has m number of outgoing arcs, each
with arc weight of ai, the total arc weights is equal
to
∑m

i=1 ai + β. The share of pulling strength of
arc xi of X (except self-loop) is ai/(

∑m
i=1 ai + β).

Whereas, the share of pulling strength of self-loop
of X is β/(

∑m
i=1 ai + β). Similarly, the share of

pulling strength of arc yj of Y (except the self-loop)
is aj/(

∑n
j=1 aj + β), and for the self-loop of Y it is

β/(
∑n

j=1 aj + β).

Considering the peer-pressure dynamics, X will re-
sist the pulling pressure from Y , as long as the strength
of remaining in the current state (in other words, the
self-loop strength) is greater than the pulling pressure
from Y . Thus, X will remain in its current cluster (not
join with Y ) as long as:

β/

(
m∑
i=1

ai + β

)
≥ ayx/

 n∑
j=1

aj + β

 , (2)

where ayx is the arc weight of the outgoing arc y2 of Y
towards X.

Otherwise, X will succumb to the pulling pressure
from Y and will join Y s cluster.

Generally, by assigning a larger value to self-loop
strength, say β = 2.0, the nodes will become more
independent and will resist pull from the neighboring
cluster. In the worst case, all nodes can remain as
stand-alone clusters (each node become a cluster on
its own). Whereas, assigning a smaller value to self-
loop strength, say β = 0.5, the nodes will become less-
independent thus succumb to the pull from the neigh-
boring cluster and will readily join it.

The side effect of assigning a smaller value to self-
loop strength is that smaller the value the more unsta-
ble the iterations become. In other words, the number
of iterations before the algorithm converges is inversely
proportional to the self-loop strength (β).

5 GPenSIM Functions for Cluster
Analysis

Table 1 summarizes the GPenSIM functions that are
used for static cluster analysis in Petri Net models.

Table 1: GPenSIM functions for Network Cluster
analysis

GPenSIM
function Description

clusterana Finds the clusters of a network.

prnclusters Prints the clusters on the screen.

The function clusterana takes one input parame-
ter named self-loop strength; self-loop strength is a
real-valued parameter, and the assigned value usu-
ally varies between 0 2. As discussed in the pre-
vious section, higher the value of self-loop strength,
stronger (more independent) individual nodes become,
thus larger number of clusters will result.

The function prnclusters gets the clusters found by
clusterana and prints these clusters on the screen.

4



Davidrajuh et.al., “Finding Clusters in Petri Nets”

5.1 Other GPenSIM functions for network
analysis

Table 2 summarizes the other GPenSIM functions that
are useful for static network analysis (Davidrajuh,
2008). These functions measure network centrality of
the elements, measuring how central (important) each
element in the network.

Table 2: GPenSIM functions for cluster analysis

GPenSIM
function

Description

degCentrality Measure normalized degree centrality
of all the nodes.

betCentrality Measure normalized betweenness
centrality of all the nodes.

cloCentrality Measure normalized closeness cen-
trality of all the nodes.

matrixD Returns the incidence matrix of a
Petri net.

sssp Finding single-source shortest paths,
using Dijkstras algorithm.

apsp Finding all-pairs shortest paths, us-
ing Johnsons algorithm. algorithm.

6 Application Example

A simple Flexible Manufacturing System (FMS) is
given in this section as the application example.
This example is taken from the authors earlier work
(Davidrajuh et al., 2018a).

The example is shown in the Figure 3 is to make only
one type of product. In this FMS:

• The input raw material of type-1 arrives on the
conveyor belt C1. Robot R1 picks the raw material
type-1 and places into the machine M1. Similarly,
robot R2 picks the raw material from conveyor belt
C2 and places into the machine M2.

• Machine M1 makes the part P1, and M2 makes
the part P2. When the parts are made by the ma-
chine M1 and M2, they are placed on the assembly
station by the robots R1 and R2, respectively.

• An assembly station AS to join the two parts P1
and P2 together to form the product. The robot
R2 does the part assembly at AS.

• Robot R3 picks the product from the assembly
station and places it on the painting (and polish-
ing) station PS. Robot R3 performs the painting
and puts the completed product into the output
buffer (cartridge) OB.

Machine M2

Machine M1

Robot R1

Robot R2

Painting 
robot R4

Assembly 
Station AS

Painting 
Station PS

Conveyor 
Belt C1

Conveyor 
Belt C2

Input buffer
IB1

Input buffer
IB2

Robot R3

Output 
buffer

OB

Figure 3: Flexible manufacturing System (Davidrajuh et al., 2018a)

5



Modeling, Identification and Control

The following activities explain the FMS operations
(t stand for transition):

• tC1: conveyor belt C1 brings the input material
type-1 into the FMS.

• tC2: conveyor belt C2 brings the input material
type-2 into the FMS.

• tC1M1: robot R1 moves raw material from con-
veyor belt C1 to M1.

• tC2M2: robot R2 moves raw material from con-
veyor belt C2 to M2.

• tM1: machining of Part-1 at machine M1.

• tM2: machining of Part-2 at machine M2.

• tMA: robot R1 moves part-1 from M1 and R2
moves part-2 from M2 into Assembly Station AS.

• tAS: robot R2 assembles parts P1 and P2 together
at the assembly station AS.

• tAP: robot R3 picks the product from the assem-
bly station and places on the painting station PS.

• tPS: robot R3 performs painting and surface pol-
ishing on the product. When the job is finished,
R3 places the product into the output buffer OB.

6.1 The Petri Net model

The Petri net model of the FMS is given in Figure 4.
The Petri net model is obtained by serially connect-
ing the activities listed in the preceding subsection. In
Figure 4, the passive places are represented by circles.
The black spot with the circle (e.g., pR1) represents the
availability of the resource (robot R1). The active tran-
sitions are represented by the rectangular boxes. The
number shown inside the rectangular box is the firing
time (machining time) of the transition. Finally, the
most important transitions (machining in M1 and M2,
assembly, and painting) are shown in shaded (grey)
rectangles, and the utility transitions (involving robots
and conveyor belts) are given as plain rectangles.

5

pC1

2

10 2

pR1

tC2M2tC2 tM2

poC1 piM1 poM1

10

pC2

10 2

pR2

tC1M1tC1 tM1

poC2 piM2 poM2

tAS

7

pi1AS

tM2AS
pIB2

pIB1

2

tM1AS

tAPtPS

8 2

piPS poAS

pR3

pOB

po1AS

po2AS

pi2AS

pR4

piCK

3

tPCK

Making of part P1

Making of part P2

Assembling

Painting & packging

Figure 4: Petri Net Model of the FMS

6



Davidrajuh et.al., “Finding Clusters in Petri Nets”

6.2 GPenSIM Implementation

For finding the clusters in the Petri net model with
GPenSIM, two M-files are needed: 1) the Main Simu-
lation File (MSF), and 2) the Petri net Definition File
(PDF). In the MSF (shown below), first, the static
Petri net structure is created from the declarations
given in the PDF. Then, the function clusterana is
called for finding the clusters and then the function
prnclusters is called for printing the clusters found.

% MSF: this is the main simulation file

% firstly, create Petri net structure

% from the PDF file ’nc_pdf.m’

pns = pnstruct(’nc_pdf’);

% analyze the static Petri net

% parameter beta (self-loop strength)

beta = 0.8; % 0 <= beta <= 2

clusterana(beta); % find the clusters

prnclusters(); % print the clusters

Due to brevity, the PDF file and the two functions
(clusterana and prnclusters) are not shown in this paper.
The interested reader is encouraged to visit the web-
page (Complete Code for the example) to download
the code and experiment with it. The software GPen-
SIM can be downloaded from the website (GPenSIM:
A General Purpose Petri Net Simulator).

7 Simulation Results

The Table 3 and Figures 5-6 given below show how the
number of clusters varies with the value of self-loop
strength (β). Table 3 shows the number of resulting
clusters and the number of iterations taken when β
was varied from 2 to 0.

Table 3: Varying the value of Self-Loop Strength

Self-loop
Strength

(β)

Number of
resulting
clusters

Number of
iterations taken to

converge

2 34 2

1.5 1.9 33 3

1.1 1.4 28 3

1 21 5

0.7 0.9 16 5

0 0.6 - (did not converge)

Initially, every element in the Petri net is an individ-
ual cluster on its own. Thus, there were 34 clusters in

pR2

tAS

7

1

1

pi1AS

1

poAS

pR3

po1AS

1

po2AS

1

pi2AS

1

1

β 

β 

β 

β 

β 

β 

β 

β 

Figure 5: Peer-pressure dynamics between two nodes

the beginning. Also, β was given the value of 2.0. This
value was strong enough for the individual elements to
hold on to their own cluster.

For example, focusing on the element tAS, it has
five outgoing arcs (outdegree is equal to 5), see Fig-
ure 5. One of the outgoing arcs is to itself (the self-
loop) with the strength of β. The other four outgoing
arcs (to poAS, po1AS, po2AS, and pR2) are with unit
arc weights of one. Thus, for tAS, the strength of hold-
ing on to its own cluster is β/(β + 4). tAS is also
pulled by three nodes such as pi1AS, pi2AS, and pR3.
The pulling strength of these three nodes is equal to
1/(β + 1) per arc. When β = 2, the strength of tAS
to hold on to its own cluster (= 2/(2 + 4) = 1/3) is
equal to the pulls from the other elements (e.g., the
strength of the pull from pR3 = 1/(2 + 1) = 1/3), thus
tAS remain in its cluster.

However, when β became 1.9, the pull experienced

pC1

2 11

1

1

pR1

poC1 piM1

tC1M1

β 

β

β
β

β

Figure 6: Peer-pressure dynamics between two nodes

7



Modeling, Identification and Control

Table 4: The 16 Clusters when self-loop strength = 0.7
0.9 (standalone clusters are not shown)

Cluster No. Elements of the cluster

1 tC1, tC1M1, pC1, poC1

2 tC2, tC2M2, pC2, poC2

3 tAS, pR3

4 tPS, pR4

5 tPCK, piCK

6 tM1, piM1, poM1

7 tM2, piM2, poM2

8 tM1AS, po1AS

9 tM2AS, pi2AS, po2AS

10 tAP, piPS, poAS

by tAS from pR3 (= 1/2.9 = 0.34) becomes larger than
the self-loop strength (= 1.9/5.9 = 0.32). Thus, tAS
joined with pR3. Thereby, the number of clusters goes
from 34 to 33. The formation of 33 clusters remained

intact as β was changed from 1.9 to 1.5.
When β was reduced to 1.4, more of the elements

were pulled into clusters. Thus, the number of clusters
drops further from 33 to 28. For example, tC1M1 and
poC1 remained as independent clusters when β was in
the region 2 1.5. When β became 1.4, tC1M1 is pulled
by poC1 to become one cluster. This is because, poC1
has an outdegree of two and the pulling strength of the
arc towards tC1M1 is equal to 1/(β + 1), see Figure 6.
Whereas tC1M1 has an outdegree of three, and its self-
loop strength is equal to β/(β + 2). tC1M1 will resist
the pull from poC1 as long as:

tC1M1 self-loop strength ≥ poC1pulling strength

β(β + 2) ≥ 1/(β + 1)

β ≥
√

2

Hence, when β became 1.4, tC1M1 joined poC1.
Finally, when β was in the region 0.9 to 0.7, there

were 16 clusters formed. When β was reduced further,
the iterations did not converge. Thus, the Petri net
shown in Figure 4 can be composed of 34 clusters at
most (every element is in its own cluster) when β = 2,
and 16 clusters at least when β = 0.70.9. Figure 7

5

pC1

2

10 2

pR1

tC2M2tC2 tM2

poC1 piM1 poM1

10

pC2

10 2

pR2

tC1M1tC1 tM1

poC2 piM2 poM2

tAS

7

pi1AS

tM2AS
pIB2

pIB1

2

tM1AS

tAPtPS

8 2

piPS poAS

pR3

pOB

po1AS

po2AS

pi2AS

pR4

piCK

3

tPCK

Making of part P1

Making of part P2

Assembling

Painting & packging

Figure 7: Petri Net Model of the FMS

8



Davidrajuh et.al., “Finding Clusters in Petri Nets”

and Table 4 show the 10 clusters of the Petri net that
possess more than a single element; the six standalone
clusters (clusters possessing only one element) are not
shown.

8 Discussion

This section discusses the implication of the simulation
result shown in the previous section, in other words
why finding clusters in a manufacturing network is im-
portant. Cluster creation is widely used in many as-
pects related to manufacturing. Clusters are used at
various levels, from production cells to virtual produc-
tion networks (aka clusters), which is especially popu-
lar among small and medium-sized enterprises (SMEs).
Clusters are central to lean manufacturing and just-in-
time (JIT) production concepts. The cellular manu-
facturing is an application of principles of group tech-
nology in manufacturing, both in medium variety and
volume mix of production. It concerns the processing
of a group of similar parts (part families) on dedicated
clusters of machines or manufacturing processes (man-
ufacturing cells) (Kioon et al., 2009; Bi et al., 2008).
Compared to the other manufacturing systems, cellu-
lar systems allow producing a higher variety of cus-
tomized products together with the simplification of
material flow and material handling, reduction of work
in progress and setup times. Research on cellular sys-
tems paves further development of highly flexible, re-
configured production systems, especially in the con-
text of changes that are associated with the emergence
of Industry 4.0 (Hermann et al., 2016; Krenczyk et al.,
2018).

The networked manufacturing systems described in
the literature refer to two different levels - the clusters
that group specific production resources and devices,
as well as to bring together manufacturers belonging to
different SMEs into producers’ networks. In this con-
text, multi-scale methods, in which it would be possible
to configure and plan the production flow for individ-
ual levels, starting from larger clusters, gradually going
to a division with fewer elements. Multi-scale model-
ing means determining the characteristics or behavior
of the system on one level by using information or a
model from a different level (Neumann et al., 2012).

In this paper, the authors propose a method for
configuring Petri Net models of production systems
into a variable number of clusters, which leads to the
use of multi-scale modeling in the production planning
and scheduling process for reconfigured production sys-
tems.

9 Conclusion

This paper presents the realization of a method for
finding clusters in networks. The method is newly
added as auxiliary functions to the software GPenSIM.
GPenSIM is a software for modeling, simulation, per-
formance analysis, and control of discrete-event sys-
tems. With these new functions, it is now possible to
perform cluster analysis of a Petri net, in addition to
the (usual) dynamic analysis.

For finding clusters, this paper presents an exten-
sion of the peer-pressure method. The extension is the
introduction of the parameter Self-loop Strength with
which the user can tune the number of clusters in the
network.

Though this paper highlights manufacturing sys-
tems, the theory, idea, and the GPenSIM functions
that are presented in this paper apply to other engi-
neering systems as well.

References

Abbaszadeh, A., Abedi, M., and Doustmohammadi, A.
General stochastic petri net approach for the esti-
mation of power system restoration duration. Inter-
national Transactions on Electrical Energy Systems,
2018. 28(6):e2550. doi:10.1002/etep.2550.

Bi, Z. M., Lang, S. Y. T., Shen, W., and
Wang, L. Reconfigurable manufacturing sys-
tems: the state of the art. International Jour-
nal of Production Research, 2008. 46(4):967–992.
doi:10.1080/00207540600905646.

Cameron, A., Stumptner, M., Nandagopal, N., Mayer,
W., and Mansell, T. Rule-based peer-to-peer frame-
work for decentralised real-time service oriented ar-
chitectures. Science of Computer Programming,
2015. 97:202 – 234. doi:10.1016/j.scico.2014.06.005.

Complete Code for the example. 2019. URL http:

//www.davidrajuh.net/gpensim/Pub/2019/MIC/.
Accessed on 07 January 2019.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and
Stein, C. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

Davidrajuh, R. Developing a new petri net tool
for simulation of discrete event systems. In 2008
Second Asia International Conference on Mod-
elling Simulation (AMS). pages 861–866, 2008.
doi:10.1109/AMS.2008.13.

Davidrajuh, R. Modeling Discrete-Event Systems
with GPenSIM. Springer International Publishing,
Cham, 2018. doi:10.1007/978-3-319-73102-5.

9

http://dx.doi.org/10.1002/etep.2550
http://dx.doi.org/10.1080/00207540600905646
http://dx.doi.org/10.1016/j.scico.2014.06.005
http://www.davidrajuh.net/gpensim/Pub/2019/MIC/
http://www.davidrajuh.net/gpensim/Pub/2019/MIC/
http://dx.doi.org/10.1109/AMS.2008.13
http://dx.doi.org/10.1007/978-3-319-73102-5


Modeling, Identification and Control

Davidrajuh, R., Skolud, B., and Krenczyk, D. Gpensim
for performance evaluation of event graphs. In Ad-
vances in Manufacturing, number 201519 in Lecture
Notes in Mechanical Engineering. Springer Inter-
national Publishing, Cham, pages 289–299, 2018a.
doi:10.1007/978-3-319-68619-6 28.

Davidrajuh, R., Skolud, B., and Krenczyk, D.
Performance evaluation of discrete event systems
with gpensim. Computers, 2018b. 7(1):8.
doi:10.3390/computers7010008.

van Dongen, S. Graph Clustering by Flow Simulation.
Ph.D. thesis, University of Utrecht, 2000.

Gilbert, J. R., Reinhardt, S., and Shah, V. B. High-
performance graph algorithms from parallel sparse
matrices. In Proceedings of the 8th International
Conference on Applied Parallel Computing: State of
the Art in Scientific Computing, PARA’06. Springer-
Verlag, pages 260–269, 2007. doi:10.1007/978-3-540-
75755-9 32.

GPenSIM: A General Purpose Petri Net Simulator.
2019. URL http://www.davidrajuh.net/gpensim.
Accessed on 07 January 2019.

Hermann, M., Pentek, T., and Otto, B. Design prin-
ciples for industrie 4.0 scenarios. In Proceedings of
the Annual Hawaii International Conference on Sys-
tem Sciences, volume 2016-March. pages 3928–3937,
2016. doi:10.1109/HICSS.2016.488.

Jyothi, S. D. Scheduling flexible manufacturing system
using petri-nets and genetic algorithm. Department
of Aerospace Engineering, Indian Institute of Space
Science and Technology: Thiruvananthapuram, In-
dia, 2012.

Kepner, J. and Gilbert, J. Graph algorithms in
the language of linear algebra. SIAM, 2011.
doi:10.1137/1.9780898719918.

Kioon, S. A., Bulgak, A. A., and Bektas, T. Integrated
cellular manufacturing systems design with produc-
tion planning and dynamic system reconfiguration.
European Journal of Operational Research, 2009.
192(2):414 – 428. doi:10.1016/j.ejor.2007.09.023.

Krenczyk, D., Skolud, B., and Herok, A. A heuris-
tic and simulation hybrid approach for mixed and
multi model assembly line balancing. In Intelli-
gent Systems in Production Engineering and Main-
tenance – ISPEM 2017, volume 637 of Advances
in Intelligent Systems and Computing. Springer In-
ternational Publishing, Cham, pages 99–108, 2018.
doi:10.1007/978-3-319-64465-3 10.

Křivánek, M. and Morávek, J. Np-hard problems in
hierarchical-tree clustering. Acta Informatica, 1986.
23(3):311–323. doi:10.1007/BF00289116.

Mutarraf, U., Barkaoui, K., Li, Z., Wu, N.,
and Qu, T. Transformation of business pro-
cess model and notation models onto petri nets
and their analysis. Advances in Mechani-
cal Engineering, 2018. 10(12):1687814018808170.
doi:10.1177/1687814018808170.

Neumann, M., Constantinescu, C., and Westkmper, E.
Method for multi-scale modeling and simulation of
assembly systems. Procedia CIRP, 2012. 3:406 – 411.
doi:10.1016/j.procir.2012.07.070.

Peterson, J. L. Petri net theory and the modeling of
systems. Prentice Hall PTR, 1981.

Robinson, E. 6. complex graph algorithms. In J. Kep-
ner and J. Gilbert, editors, Graph Algorithms in
the Language of Linear Algebra, pages 59–84. Soci-
ety for Industrial and Applied Mathematics, 2011.
doi:10.1137/1.9780898719918.ch6.

10

http://dx.doi.org/10.1007/978-3-319-68619-6_28
http://dx.doi.org/10.3390/computers7010008
http://dx.doi.org/10.1007/978-3-540-75755-9_32
http://dx.doi.org/10.1007/978-3-540-75755-9_32
http://www.davidrajuh.net/gpensim
http://dx.doi.org/10.1109/HICSS.2016.488
http://dx.doi.org/10.1137/1.9780898719918
http://dx.doi.org/10.1016/j.ejor.2007.09.023
http://dx.doi.org/10.1007/978-3-319-64465-3_10
http://dx.doi.org/10.1007/BF00289116
http://dx.doi.org/10.1177/1687814018808170
http://dx.doi.org/10.1016/j.procir.2012.07.070
http://dx.doi.org/10.1137/1.9780898719918.ch6
http://creativecommons.org/licenses/by/3.0

	Introduction
	Introduction To GPenSIM
	Cluster analysis: The basics
	Peer-pressure based clustering
	The Peer-Pressure Algorithm
	Running Time and Space Complexity

	Extension to Peer pressure algorithm
	Parameter "Self-loop Strength"
	The influence of "Self-Loop"

	GPenSIM Functions for Cluster Analysis
	Other GPenSIM functions for network analysis

	Application Example
	The Petri Net model
	GPenSIM Implementation

	Simulation Results
	Discussion
	Conclusion

