“Dynamic Modeling of a 2-RPU+2-UPS Hybrid Manipulator for Machining Application”

Authors: Ruiqin Li, Shusen Wang, Dabao Fan, Yuting Du and Shaoping Bai,
Affiliation: North University of China and Aalborg University
Reference: 2017, Vol 38, No 4, pp. 169-184.

Keywords: gantry hybrid machine tool, 2-RPU+2-UPS, kinematics and dynamics modeling, large-scale structural part machining

Abstract: This paper presents a novel 5-DOF gantry hybrid machine tool, designed with a 2-RPU+2-UPS parallel mechanism for 3T2R motion. The 2-RPU+2-UPS parallel mechanism is connected to a long linear guide to realize 5-axis machining. A dynamic model is developed for this parallel-serial hybrid system. Screw theory is adopted to establish the kinematic equations of the system, upon which the dynamics model is developed by utilizing the principle of virtual work. A numerical example for processing slender structural parts is included to show the validity of the analytical dynamic model developed.

PDF PDF (6538 Kb)        DOI: 10.4173/mic.2017.4.2

DOI forward links to this article:
[1] M Ratiu and D M Anton (2020), doi:10.1088/1757-899X/898/1/012007
[2] Xin Yuan, Qizhi Meng, Fugui Xie, Xin-Jun Liu and Jinsong Wang (2023), doi:10.1016/j.mechmachtheory.2023.105346
References:
[1] Assal, S. F.M. (2015). Assal, S, F.M. A novel planar parallel manipulator with high orientation capability for a hybrid machine tool: kinematics, dimensional synthesis and performance evaluation. Robotica. 35(5):1031--1053. doi:10.1017/S0263574715000958
[2] Cheng, G. and Shan, X. (2012). Cheng, G, and Shan, X. Dynamics analysis of a parallel hip joint simulator with four degree of freedoms (3R1T). Nonlinear Dynamics. 70(4):2475--2486. doi:10.1007/s11071-012-0635-4
[3] Gallardo-Alvarado, J., Aguilar-N¨¢jera, C.R., Casique-Rosas, L., Rico-Mart¨ªnez, J.M., and Islam, M.N. (2008). Gallardo-Alvarado, J, , Aguilar-N¨¢jera, C.R., Casique-Rosas, L., Rico-Mart¨ªnez, J.M., and Islam, M.N. Kinematics and dynamics of 2(3-RPS) manipulators by means of screw theory and the principle of virtual work. Mechanism and Machine Theory. 43(10):1281--1294. doi:10.1016/j.mechmachtheory.2007.10.009
[4] Gallardo-Alvarado, J., Rodriguezcastro, R., Aguilarnajera, C.R., and Perezgonzalez, L. (2012). Gallardo-Alvarado, J, , Rodriguezcastro, R., Aguilarnajera, C.R., and Perezgonzalez, L. A novel six-degrees-of-freedom series-parallel manipulator. Journal of Mechanical Science and Technology. 26(6):1901--1909. doi:10.1007/s12206-012-0408-5
[5] Gao, Z. and Zhang, D. (2015). Gao, Z, and Zhang, D. Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. Industrial Electronics IEEE Transactions on. 62(1):423--433. doi:10.1109/TIE.2014.2327008
[6] Horn, G. and Linge, S. (1995). Horn, G, and Linge, S. Analytical generation of the dynamical equations for mechanical manipulators. Modeling Identification and Control. 16(3):155--167. doi:10.4173/mic.1995.3.4
[7] Hu, B., Lu, Y., Tan, Q., Yu, J., and Han, J. (2011). Hu, B, , Lu, Y., Tan, Q., Yu, J., and Han, J. Analysis of stiffness and elastic deformation of a 2(SP+SPR+SPU) serial-parallel manipulator. Robotics and Computer-integrated Manufacturing. 27(2):418--425. doi:10.1016/j.rcim.2010.09.002
[8] Hu, B., Lu, Y., Yu, J., and Zhuang, S. (2012). Hu, B, , Lu, Y., Yu, J., and Zhuang, S. Analyses of inverse kinematics, statics and workspace of a novel 3RPS-3SPR serial-parallel manipulator. The Open Mechanical Engineering Journal. 6(Suppl.1):65--72. doi:10.2174/1874155X01206010065
[9] Hu, B. and Yu, J. (2015). Hu, B, and Yu, J. Unified solving inverse dynamics of 6-DOF serial¨cparallel manipulators. Applied Mathematical Modelling. 39(16):4715--4732. doi:10.1016/j.apm.2015.04.020
[10] Huang, P., Wang, J., Wang, L., and Yao, R. (2011). Huang, P, , Wang, J., Wang, L., and Yao, R. Kinematical calibration of a hybrid machine tool with regularization method. International Journal of Machine Tools and Manufacture. 51(3):210--220. doi:10.1016/j.ijmachtools.2010.11.009
[11] Huang, T., Wang, P., Zhao, X., and Chetwynd, D.G. (2010). Huang, T, , Wang, P., Zhao, X., and Chetwynd, D.G. Design of a 4-DOF hybrid pkm module for large structural component assembly. Cirp Annals-manufacturing Technology. 59(1):159--162. doi:10.1016/j.cirp.2010.03.098
[12] Jalon, J. G.d. and Bayo, E. (1994). Jalon, J, G.d. and Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer-Verlag New York, Inc., Secaucus, NJ, USA. .
[13] Jiang, Y., Li, T., and Wang, L. (2015). Jiang, Y, , Li, T., and Wang, L. Dynamic modeling and redundant force optimization of a 2-DOF parallel kinematic machine with kinematic redundancy. Robotics and Computer-integrated Manufacturing. 32:1--10. doi:10.1016/j.rcim.2014.08.001
[14] Khalil, W. and Ibrahim, O. (2007). Khalil, W, and Ibrahim, O. General solution for the dynamic modeling of parallel robots. Journal of Intelligent and Robotic Systems. 49(1):19--37. doi:10.1007/s10846-007-9137-x
[15] Li, Y., Wang, J., Liu, X.J., and Wang, L.P. (2010). Li, Y, , Wang, J., Liu, X.J., and Wang, L.P. Dynamic performance comparison and counterweight optimization of two 3-DOF parallel manipulators for a new hybrid machine tool. Mechanism and Machine Theory. 45(11):1668--1680. doi:10.1016/j.mechmachtheory.2010.06.009
[16] Lian, B., Sun, T., Song, Y., Jin, Y., and Price, M. (2015). Lian, B, , Sun, T., Song, Y., Jin, Y., and Price, M. Stiffness analysis and experiment of a novel 5-DOF parallel kinematic machine considering gravitational effects. International Journal of Machine Tools and Manufacture. 95:82--96. doi:10.1016/j.ijmachtools.2015.04.012
[17] Liang, C. and Ceccarelli, M. (2012). Liang, C, and Ceccarelli, M. Design and simulation of a waist-trunk system for a humanoid robot. Mechanism and Machine Theory. 53:50--65. doi:10.1016/j.mechmachtheory.2012.02.009
[18] Liu, S. and Yu, Y. (2008). Liu, S, and Yu, Y. Dynamic design of a planar 3-DOF parallel manipulator. Chinese Journal of Mechanical Engineering. 44(04):47. doi:10.3901/JME.2008.04.047
[19] Lu, Y., Wang, P., Hou, Z., Hu, B., Sui, C., and Han, J. (2014). Lu, Y, , Wang, P., Hou, Z., Hu, B., Sui, C., and Han, J. Kinetostatic analysis of a novel 6-DoF 3UPS parallel manipulator with multi-fingers. Mechanism and Machine Theory. 78:36--50. doi:10.1016/j.mechmachtheory.2014.02.017
[20] Lyzell, C. and Hovland, G. (2007). Lyzell, C, and Hovland, G. Verification of the dynamics of the 5-DOF gantry-tau parallel kinematic machine. In Iasted International Conference on Robotics and Applications. pages 445--450. .
[21] Merlet, J.P. (2002). Merlet, J, P. Parallel Robots. Kluwer Academic Publishers,The Netherlands. .
[22] Pashkevich, A., Chablat, D., and Wenger, P. (2009). Pashkevich, A, , Chablat, D., and Wenger, P. Stiffness analysis of overconstrained parallel manipulators. Mechanism and Machine Theory. 44(5):966--982. doi:10.1016/j.mechmachtheory.2008.05.017
[23] Pisla, D., Gherman, B., Vaida, C., Suciu, M., and Plitea, N. (2013). Pisla, D, , Gherman, B., Vaida, C., Suciu, M., and Plitea, N. An active hybrid parallel robot for minimally invasive surgery. Robotics and Computer-integrated Manufacturing. 29(4):203--221. doi:10.1016/j.rcim.2012.12.004
[24] Sokolov, A. and Xirouchakis, P. (2007). Sokolov, A, and Xirouchakis, P. Dynamics analysis of a 3-DOF parallel manipulator with R¨CP¨CS joint structure. Mechanism and Machine Theory. 42(5):541--557. doi:10.1016/j. mechmachtheory. 2006.05.004
[25] Vaida, C., Pisla, D., Plitea, N., Gherman, B., Gyurka, B., Graur, F., and Vlad, L. (2010). Vaida, C, , Pisla, D., Plitea, N., Gherman, B., Gyurka, B., Graur, F., and Vlad, L. Development of a voice controlled surgical robot. 2010. pages 567--574. doi:10.1007/978-90-481-9689-0_65
[26] Wu, G. and Bai, S. (2016). Wu, G, and Bai, S. Design analysis and dynamic modeling of a high-speed 3T1R parallel robot for pick-and-place application. International Journal of Mechanisms and Robotic Systems. 3(2/3):237. doi:10.1504/IJMRS.2016.10001895
[27] Wu, G., Bai, S., and Kepler, J. (2015). Wu, G, , Bai, S., and Kepler, J. Stiffness characterization of a 3-PPR planar parallel manipulator with actuation compliance. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2015. 229(12). doi:10.1177/0954406214557341
[28] Wu, G., Caro, S., Bai, S., and Kepler, J. (2014). Wu, G, , Caro, S., Bai, S., and Kepler, J. Dynamic modeling and design optimization of a 3-DOF spherical parallel manipulator. Robotics and Autonomous Systems. 62(10):1377 -- 1386. doi:10.1016/j.robot.2014.06.006
[29] Wu, J., Wang, D., and Wang, L. (2015). Wu, J, , Wang, D., and Wang, L. A control strategy of a two degrees-of-freedom heavy duty parallel manipulator. Journal of Dynamic Systems Measurement and Control, 2015. 137(6):061007. doi:10.1115/1.4029244
[30] Zhang, D., Bi, Z., and Li, B. (2009). Zhang, D, , Bi, Z., and Li, B. Design and kinetostatic analysis of a new parallel manipulator. Robotics and Computer Integrated Manufacturing. 25(4):782--791. doi:10.1016/j.rcim.2008.10.002
[31] Zhao, Yongjie, Gao, and Feng. (2009). Zhao, Yongjie, Gao, and Feng, Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work. Robotica. 27(2):259--268. doi:10.1017/S0263574708004657


BibTeX:
@article{MIC-2017-4-2,
  title={{Dynamic Modeling of a 2-RPU+2-UPS Hybrid Manipulator for Machining Application}},
  author={Li, Ruiqin and Wang, Shusen and Fan, Dabao and Du, Yuting and Bai, Shaoping},
  journal={Modeling, Identification and Control},
  volume={38},
  number={4},
  pages={169--184},
  year={2017},
  doi={10.4173/mic.2017.4.2},
  publisher={Norwegian Society of Automatic Control}
};