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Abstract

This paper presents a novel 5-DOF gantry hybrid machine tool, designed with a 2-RPU+2-UPS parallel
mechanism for 3T2R motion. The 2-RPU+2-UPS parallel mechanism is connected to a long linear guide
to realize 5-axis machining. A dynamic model is developed for this parallel-serial hybrid system. Screw
theory is adopted to establish the kinematic equations of the system, upon which the dynamics model is
developed by utilizing the principle of virtual work. A numerical example for processing slender structural
parts is included to show the validity of the analytical dynamic model developed.

Keywords: gantry hybrid machine tool, 2-RPU+2-UPS, kinematics and dynamics modeling, large-scale
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1 Introduction

In a hybrid configuration, a mechanism combines
both series and parallel kinematic chains. Hybrid
mechanisms have attracted significant attention from
academia and industry due to their high stiffness, high
precision, large workspace, flexibility, and other perfor-
mance advantages (Merlet (2002) and Gao and Zhang
(2015)).

Many different hybrid mechanisms have been pro-
posed. A hybrid mechanism, PARASURG-9M, pro-
posed by Pisla et al. (2013), was used for minimally
invasive surgery. It is composed of the 5-DOF series
positioning module PARASURG-5M and 4-DOF par-
allel module PARASIM (Vaida et al. (2010)). Three
hybrid mechanisms of 6-DOF constructed by serially
connecting 2 parallel mechanisms were presented by
Hu et al. (2011), Hu et al. (2012), Hu and Yu (2015),
which include 2(SP+SPR+SPU), (3-RPS)+(3-SPR),
and (UPR+RPS+UPS)+(3-UPS/UP). Hereinafter, U,
P, R, S stand for universal/Hooke, prismatic, revolute
and spherical joints. A 2-DOF hybrid mechanism used

for horizontal machine tools was presented by Jiang
et al. (2015). It is composed of a 2-DOF redundant
driving planar parallel mechanism with a 2-DOF mo-
bile platform. Liang and Ceccarelli (2012) proposed a
hybrid mechanism for a waist-trunk system for a hu-
manoid robot. The hybrid mechanism is constructed
with chains in series of a 3-DOF 3-SPS+S parallel
mechanism and a 6-DOF 6-SPS parallel mechanism.
Huang et al. (2010) developed a 4-DOF hybrid kine-
matic machine composed of a 2-DOF parallel mech-
anism combined with a 2-DOF rotating head. This
hybrid machine is configured for a robot cell moving
along a long track for aircraft wing box assemblies.
Gallardo-Alvarado et al. (2012) proposed a 6-DOF 3-
PPS+3-RPS hybrid mechanism. This hybrid mecha-
nism has a decoupled topology feature. Huang et al.
(2011) developed a configuration of a 3-P(4R)S-XY hy-
brid machine tool and derived the error model and er-
ror kinematics. Lu et al. (2014) proposed a 6-DOF 3-
UPS parallel manipulator with multiple fingers; their
manipulator has three fingers installed on a moving
platform, which decreases interference and enlarged its
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position and orientation workspace.

In addition, Assal (2015) designed a planar parallel
manipulator with high orientation ability for a hybrid
machine tool. Wu et al. (2015b) established an effective
dynamic model that took into consideration the defor-
mation of the flexible link of the heavy duty parallel
manipulator.

Giving many hybrid manipulators proposed, how-
ever, the literatures are mainly limited to the kine-
matics modeling, with very few on dynamics model-
ing. The rigid-body dynamics model of the 5-DOF
Gantry-Tau parallel kinematic machine was verified
with experiment by Lyzell and Hovland (2007). A
general method to calculate the inverse and direct dy-
namic models of parallel robots with closed expression
is presented by Khalil and Ibrahim (2007). The dy-
namic performance of a new 5-DOF hybrid machine
tool composed of a 3-DOF parallel manipulator com-
bined with a 2-DOF feed worktable was analyzed by Li
et al. (2010). The stiffness of a 5-DOF hybrid machine
tool composed of 2 parallel mechanisms was analyzed
by Lian et al. (2015).

This work is focused on the dynamic modeling of
hybrid manipulators. While dynamic approaches, in-
cluding the Lagrange method (Liu and Yu (2008), Wu
et al. (2014)), Newton-Euler method (Jalón and Bayo
(1994), Zhang et al. (2009)), Kane method (Cheng and
Shan (2012)), principle of virtual work (Sokolov and
Xirouchakis (2007)) and (Zhao et al. (2009)), and screw
theory (Gallardo-Alvarado et al. (2008)) are commonly
used and applied in manipulator dynamics (Horn and
Linge (1995), Wu and Bai (2016)), this work adopts
the principle of virtual work, under the consideration
to eliminate the internal forces and effectively reduce
the computational complexity.

The motivation behind the modeling work pertains
to the design of a novel 5-DOF Gantry Hybrid Ma-
chine Tool (GHMT for short) to machine relatively
large and slender structural parts with complex curved
surfaces that are often used in railway carriages, air-
craft wings, and wind turbine blades. The 5-DOF
GHMT includes a novel 2-RPU+2-UPS parallel mech-
anism with 2 translations and 2 rotations. By con-
necting it to the slide guide in a series, the mechanism
can have translations along 3 axes and yaw and pitch
rotations. Not only can this hybrid tool machine pro-
cess complex slender structural parts, but it provides a
large workspace and better control and kinematic per-
formance than existing machine tools.

The paper is organized as follows. The configura-
tion of the GHMT is explained and the driving selec-
tion is described in Section 2. The kinematic model of
the GHMT is established in Section 3. The dynamic
model using the principle of virtual work is established

in Section 4. Section 5 describes the validation of the
model, followed by Section 6 with a numerical example
for the driving force of the GHMT when it is used for
a large slender structural part. The work is concluded
in Section 7.

2 Model of the 5-DOF GHMT

2.1 Configuration of the 5-DOF GHMT

A CAD model of the 5-DOF GHMT is shown in Figure
1. Its kinematic model is presented in Figure 2.
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Figure 1: CAD model of the 5-DOF GHMT
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Figure 2: The schematic diagram of the 5-DOF GHMT

The 2-RPU+2-UPS parallel mechanism is comprised
of a sliding platform, a moving platform (MP), two
identical RPU limbs, and two identical UPS limbs. One
end of the RPU limb connects the sliding platform with
the revolute pair R, and the other end connects the MP
with universal joint U. In the two universal joints of
the RPU limbs, the two axes of the first revolute pairs
are collinear and the two axes of the second revolute
pairs are parallel to the axis of the sliding pair. One
end of the UPS limb connects the sliding platform with
Hooke joint U, and the other end connects the MP with
spherical pair S. The parallel mechanism is connected
to the linear guide by two sliding pairs P5.
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In Figure 2, the distances between the hinge points
B2, B3, and B4, and the sliding platform center O1 are
equal, marked as a. The distance between point B1

and O1 is marked as b. Four hinge points Ai (i=1, 2,
3, 4) on the MP are evenly distributed in the square
with a side length of 2c. The length of each limb is
equal to l i (i=1, 2, 3, 4).

2.2 Coordinate Systems of the 5-DOF
GHMT

Referring to Figure 2, there are three coordinate sys-
tems. The fixed coordinate system O-xyz, marked as
{O}, is connected to the two parallel linear guides. The
coordinate origin O is located at the center of the two
guides. The y-axis is parallel to the moving direction
of the guides and passes through points B2 and B4.
The x -axis is perpendicular to the guides.

The sliding coordinate system O1-x 1y1z 1, marked
as {O1}, is connected to the sliding platform. The
coordinate origin O1 is located at the center of two
guides and is the midpoint between B2 and B4. The
y1-axis is parallel to the moving direction of the guide
and passes through points B2 and B4. The x 1-axis
passes through points B1 and B3.

The moving coordinate system O2-x 2y2z 2, marked
as {O2}, is connected to the MP. The coordinate ori-
gin O2 is located at the center of the MP. The x2-axis
passes through points A1 and A3. The y2-axis passes
through points A2 and A4.

The cutter axis is always aligned with the z2-axis.

2.3 DOF Analysis of the 5-DOF GHMT

As shown in Figure 2, each UPS limb does not apply
any constraint on the MP, while each RPU limb pro-
duces 2 constraint force screws, $

r
i1 and $

r
i2 (i=1, 3), on

the MP. Here, $
r
i1 is a constraint linear vector, and it is

coaxial with the corresponding limb universal pair and
parallel to the axis of revolute pair, i.e., parallel to the
y2 axis.$

r
i2 is the constraint couple, and it is perpen-

dicular to all shafts in the limbs, so it is perpendicular
to the Hooke hinge (i.e., parallel to the z 2-axis).

Two constraint linear vectors show linear depen-
dence, and can be expressed by the linear vector basis
of the force. Two constraint couples also show linear
dependence and can be expressed by the couple basis.
Their expressions are as follows:

$
r′

1 =
(
0 1 0; 0 0 0

)
(1)

$
r′

2 =
(
0 0 0; 0 0 1

)
(2)

According to the relationship between the kinematic
screw and constraint screw in screw theory, the recipro-

cal screw of 2 force screws, $
r′

1 and $
r′

2 , are 4 irrelevant

kinematic screws of the MP.

$m1=
(
1 0 0; 0 0 0

)
$m2=

(
0 1 0; 0 0 0

)
$m3=

(
0 0 0; 1 0 0

)
$m4=

(
0 0 0; 0 0 1

)
(3)

These four kinematic screws reflect the unrestrained
motion of two force screws, $

r′

1 and $
r′

2 , relative to a
MP, thus the MP of the 2-RPU+2-UPS parallel mech-
anism has 4 DOFs relative to the sliding platform: the
rotation around the x 1-axis and y1-axis and translation
along the x 1-axis and z 1-axis. Connecting the parallel
mechanism to the guide by sliding pair P5 in a series
can achieve translation along the y axis. This allows
for the realization of the 5 DOF movements of the hy-
brid machine tool.

As this GHMT has 5 DOFs, there are 5 linearly in-
dependent driving inputs. One of them is a sliding pair
P5 between the sliding platform and the guide, and the
other 4 driving inputs are in the 2-RPU+2-UPS par-
allel mechanism. To improve the performance of the
GHMT, all actuations should be as close as possible
to the sliding platform. Four sliding pairs, P1, P2, P3,
and P4, connected to the sliding platform were selected
as the driving pairs.

3 Kinematic Model of the 5-DOF
GHMT

3.1 The Inverse Position Analysis of the
5-DOF GHMT

The inverse position problem of the 5-DOF GHMT
is to find the displacement si of the sliding pair
in each limb (i=1, 2,· · · ,5) for given position and
orientation (xD, yD, zD, ψ, θ, φ) of the tooling point
D relative to the fixed coordinate system {O}.
Moreover,OD=(xD, yD, zD)

T
is the position of tooling

point D, and ψ, θ, φ are Tait-Bryan angles following Z -
Y -X convention. As the mechanism has no rotational
freedom around the z axis, i.e., φ=0, the rotation ma-
trix R is

R =

 cθ sθsψ sθcψ
0 cψ −sψ
−sθ cθsψ cθcψ

 (4)

Hereafter, s=sin and c=cos.
As the axis of the cutter is parallel to the z 2 axis, its

direction vector can be written as

n =
(
sθcψ −sψ cθcψ

)T
(5)
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The coordinate of the center of the MP O2, which is
located at one end of the cutter shaft, is calculated by

O2 = OD + dn

=
(
xD + d · sθcψ yD − d · sψ zD + d · cθcψ

)T
(6)

where d is the length of the cutter shaft.
The coordinate of point O1 can be expressed as

O1=
(
0 yD − d · sψ 0

)T
(7)

The input displacement of the active sliding pair P5

on the guide can be expressed as

s5 = yD − d · sinψ (8)

The coordinate of the MP center relative to the slid-
ing platform can be expressed as

O1O2 =OD + dn

=
(
xD + d · sθcψ 0 zD + d · cθcψ

)T (9)

The position of point Bi (i=1, 2, 3, 4) in {O1} and
point Ai (i=1, 2, 3, 4) in {O2} are expressed as follows,
respectively:

O1B1 = (b, 0, 0)
T

O1B2 = (0, a, 0)
T

O1B3 = (−a, 0, 0)
T

O1B4 = (0,−a, 0)
T

,


O2A1 = (c, 0, 0)

T

O2A2 = (0, c, 0)
T

O2A3 = (−c, 0, 0)
T

O2A4 = (0,−c, 0)
T

(10)
Through homogeneous coordinate transformation,

the coordinate position of point Ai (i=1, 2, 3, 4) is
transformed into {O1}, and the transformation formula
is

O1Ai = R O2Ai+
O1O2 (11)

Now, the vectors of the four driving parts can be
expressed in {O1}:

li = O1Ai − O1Bi (i = 1, 2, 3, 4) (12)

Thus, the input displacement is

si = li − li0 (i = 1, 2, 3, 4) (13)

where li0 is the initial length of the driving rod.

3.2 The Workspace Analysis of the 5-DOF
GHMT

The range of motion of the 5-DOF GHMT can be de-
termined geometrically.

Figure 3 shows the movement range of the MP in
the z direction. Extreme positions are achieved when
minimum or maximum lengths of l1 and l3 are reached.

z = zmax − zmin (14)

where zmax and zmin are the extreme positions of the
MP. Let the MP keep horizontal, zmax and zmin are
found as, 

zmin=l3min cos γ1

zmax=l3max cos γ2

γ1 = sin−1
a−c
l3min

γ2 = sin−1
a−c
l3max

(15)

where dimensions a and c are illustrated in Figure 2.
Figure 4 shows the extreme positions of the MP along
x direction.
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and the rotation extreme position of the MP around y axis 

is showed in Figure 5. 
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Figure 3: The movement diagram of the MP along z
direction, with extreme positions displayed
in dashed lines

The maximum displacement of the MP along the
positive x axis for a given z is expressed as follows:

x+ =

√
lm

2 + z2 (16)

where,

lm =

√
(a− c)2 + l3max

2 − 2 (a− c) l3max cos γ3 (17)

γ3 = sin−1
z

l3max
(18)

Similarly, the movement of distance of the MP along
the negative x axis could be calculated by above
method.
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The rotation range around y axis clockwise is an-
alyzed and the rotation extreme position of the MP
around y axis is showed in Figure 5.

The maximum rotation is achieved when one actua-
tor reaches the minimum length and the other reaches
the maximum. The rotation range of the MP around
y axis is calculated as follows:

φmax = tan−1
z

a
− cos−1

c2 + z2 + a2 − l3min
2

2c
√
z2 + a2

(19)

Similarly, the rotation range around y axis counter-
clockwise and the rotation range around x axis could
be calculated by the above method.

           Ruiqin Li et.al., “Dynamic Modeling of a 2-RPU+2-UPS Hybrid Manipulator for Machining Application”           

sliding platform can be expressed as 
( )1

T
2 = = s c 0 c cO

D D Dd x d z dθ ψ θ ψ+ + ⋅ + ⋅O O n . 
(9) 

The position of point Bi (i=1,2,3,4) in {O1} and point 
Ai (i=1,2,3,4) in {O2} are expressed as follows, 
respectively: 

1 2

1 2

1 2

1 2

T T
1 1

T T
2 2

T T
3 3

T T
4 4

( ,0,0) ( ,0,0)
(0, ,0) (0, ,0)

,
( ,0,0) ( ,0,0)
(0

        
  

, ,0

      

) (0, ,0)

B A
B A
B A
B A

 = =
 = = 
 

= − = − 
 = − = − 

O O

O O

O O

O O

b c
a c

a c
a c

.   (10) 

Through homogeneous coordinate transformation, the 
coordinate position of point Ai (i=1,2,3,4) is transformed 
into {O1}, and the transformation formula is 

1 2 1
2= +A R A OO O O

i i .               (11) 
Now, the vectors of the four driving parts can be 

expressed in {O1}: 
1 1l A B= −O O

i i i    (i=1, 2, 3, 4).          (12) 
Thus, the input displacement is 

0= −i i is l l    (i=1, 2, 3, 4),              (13) 
where 0il  is the initial length of the driving rod. 
 

3.2  The workspace analysis of the 5-DOF GHMT 

The range of motion of the 5-DOF GHMT can be 
determined geometrically. 
 

 
 

Figure 3:  The movement diagram of the MP along z direction, 
with extreme positions displayed in dashed lines 

 
Figure 3 shows the movement range of the MP in the 

z direction. Extreme positions are achieved when 
minimum or maximum lengths of l1 and l3 are reached.  
 

max minz z z= −               (14) 
where zmax and zmin are the extreme positions of the MP. 
Let the MP keep horizontal, zmax and zmin are found as, 
 

min 3min 1

max 3max 2

1
1

3min

1
2

3max

= cos
= cos

sin

sin

z l
z l

a c
l
a c
l

γ
γ

γ

γ

−

−




 − =

 −

=


            (15) 

 
where dimensions a and c are illustrated in Figure 2. 
Figure 4 shows the extreme position of the MP along x 
direction. 

    
Figure 4:  The extreme position of the MP along x axis 
positive direction 
 

The maximum movement of the MP along the positive 
x axis for a given z is expressed as follows: 
 

2 2
mx l z+ = +                (16) 

where, 

( ) ( )2 2
3max 3max 32 cosml a c l a c l γ= − + − −

   
 (17) 

 
1

3
3max

= sin z
l

γ −

              (18) 
 
Similarly, the movement of distance of the MP along 

the negative x axis could be calculated by above method.  
The rotation range around y axis clockwise is analyzed 

and the rotation extreme position of the MP around y axis 
is showed in Figure 5. 

O1' 
 

 
 

A3 

 
 

 

O2

 
 

 
 

A1 

 
 

 

z 
 

 
 

γ3 

 
 

 
 

lm 
 

 
 

l3max 
 

 
 

l1 
 

 
 

B1 
 

 
 

O1 
 

 
 

B3 
 

 
 

  

        

l30 
γ1 

l3min 

l10 l3max 

γ2 

A1'' O2'' 

A1' A3' 

A3 A1 

O2' 

O2 

A3'' 

B1 O1 B3 

Figure 4: The extreme position of the MP along x axis
positive direction
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Figure 5:  The rotation extreme position of the MP around y 

axis 

 

The maximum rotation is achieved when one actuator 

reaches the minimum length and the other reaches the 

maximum. The rotation range of the MP around y axis is 

calculated as follows: 

 
2 2 2 2

1 1 3min
max

2 2
tan cos

2

z c z a l

a c z a
     

 


     (19) 

 

Similarly, the rotation range around y axis 

counterclockwise and the rotation range around x axis 

could be calculated by the above method. 

3.3  The velocity analysis of the 5-DOF GHMT 

The vectors in Figure 6 are described in the coordinate 

system {O}, as shown in Table 1. 

 

 
Figure 6:  The velocities of the 5-DOF GHMT 

 

The velocity of the end of each limb on the MP can 

also be expressed as 

2=v v ω e i O i
.              (20) 

The driving velocity 
liv  along the driving rod li (i=1, 

2, 3, 4) is expressed as follows: 
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T 2T
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v n v ω e n n e n
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               (21) 

Equation (21) is rewritten in matrix form as 

 

2
 =
v

v J
ω

 
 
 

O

l l ,                (22) 

where 
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,      (23) 

where J l
 is a 4 6  velocity Jacobian matrix. It 

reflects the velocity mapping relationship between the 

velocity of the MP and absolute driving velocity. 

 

Table 1:  The vectors used in Figure 6 ( 1,2,3,4i  ) 

Parameters Meaning 

1Ov  
The speed of the sliding platform sliding 

on the guide 

2Ov  The velocity of the MP 

ω  The angular velocity vector of the MP 

iv  
The velocity of point Ai at the lower end of 

the driving rod 

 i i

i

i i






A B
n

A B
 

The unit vector along the driving rod 

direction 

2i i e A O  The positional vector from O2 to Ai 

1i i r B O  The positional vector from O1 to Bi 

 

The position (xO2, yO2, zO2) of the MP center is the 

function of the generalized coordinates , , , , D D Dx y z . 

By differentiating equation (6) with respect to time, we 

obtain 

2

1 0 0 c c s s

0 1 0 0 c ,

0 0 1 s c c s

O s

d d

d

d d

   


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v v     (24) 

where 
T

v     s D D Dx y z .         (25) 

The rotational angular velocity ω  of the MP can be 

expressed by the linear superposition of the Tait-Bryan 

angular velocity 
T

   
  . 
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Figure 5: The rotational extreme position of the MP
around y axis

3.3 The Velocity Analysis of the 5-DOF
GHMT

The vectors in Figure 6 are described in the coordinate
system {O}, as shown in Table 1.

The velocity of the end of each limb on the MP can
also be expressed as

vi=vO2 + ω × ei (20)
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1
3

3max

= sin z
l

γ −

              (18) 
Similarly, the movement of distance of the moving 

platform along the negative x axis could be calculated by 
above method.  

The rotation range around y axis clockwise is analyzed 
and the rotation extreme position of the moving platform 
around y axis is showed in Figure 5. 

 
Figure 5:  The rotation extreme position of the moving 

platform around y axis 
 

The maximum rotation is achieved when one actuator 
reaches the minimum length and the other reaches the 
maximum. The rotation range of the moving platform 
around y axis is calculated as follows: 

 
2 2 2 2
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max 2 2

tan cos
2

z c z a l
a c z a

φ − − + + −
= −

+
     (19) 

 
Similarly, the rotation range around y axis 

counterclockwise and the rotation range around x axis 
could be calculated by the above method. 

3.3  The velocity analysis of the 5-DOF GHMT 

The vectors in Figure 6 are described in the coordinate 
system {O}, as shown in Table 1. 
 
.

 
Figure 6:  The velocities of the 5-DOF GHMT 

 
The velocity of the end of each limb on the moving 

platform can also be expressed as 
2=v v ω e+ ×i O i .              (20) 

The driving velocity liv  along the driving rod li (i=1, 
2, 3, 4) is expressed as follows: 
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Equation (21) is rewritten in matrix form as 
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where J l  is a 4 6×  velocity Jacobian matrix. It 
reflects the velocity mapping relationship between the 
velocity of the moving platform and absolute driving 
velocity. 
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Figure 6: The velocities of the 5-DOF GHMT

Table 1: The vectors used in Figure 6 (i=1, 2, 3, 4)

Parameters Meaning

vO1 The speed of the sliding plat-
form sliding on the guide

vO2 The velocity of the MP
ω The angular velocity vector of

the MP
vi The velocity of point Ai at the

lower end of the driving rod

ni =
(Ai−Bi)
|Ai−Bi| The unit vector along the driv-

ing rod direction
ei = Ai −O2 The positional vector from O2 to

Ai

ri = Bi −O1 The positional vector from O1 to
B i

The driving velocity vli along the driving rod l i (i=1,
2, 3, 4) is expressed as follows:

vli=vi · ni= (vO2 + ω × ei) · ni

=
[
nT
i (ei × ni)

T
] [ vO2

ω

] (21)

Equation (21) is rewritten in matrix form as

vl=Jl

[
vO2

ω

]
(22)
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where

Jl =


nT
1 (e1 × n1)

T

nT
2 (e2 × n2)

T

nT
3 (e3 × n3)

T

nT
4 (e4 × n4)

T

 , vl=


vl1
vl2
vl3
vl4

 (23)

where Jl is a 4×6 velocity Jacobian matrix. It reflects
the velocity mapping relationship between the velocity
of the MP and absolute driving velocity.

The position (xO2, yO2, zO2) of the MP cen-
ter is the function of the generalized coordinates
xD, yD, zD, θ, ψ. By differentiating equation (6)
with respect to time, we obtain

vO2 =

 1 0 0 d · cθcψ −d · sθsψ
0 1 0 0 −d · cψ
0 0 1 −d · sθcψ −d · cθsψ

 vs (24)

where
vs =

[
ẋD ẏD żD θ̇ ψ̇

]T
(25)

The rotational angular velocity ω of the MP can be
expressed by the linear superposition of the Tait-Bryan

angular velocity
[
φ̇ θ̇ ψ̇

]T
ω =

 0 −sφ cφcθ
0 cφ sφcθ
1 0 −sθ

 φ̇θ̇
ψ̇

 (26)

As φ̇=0, the equation becomes

ω =

 0 cθ
1 0
0 −sθ

[ θ̇
ψ̇

]
=

 0 0 0 0 cθ
0 0 0 1 0
0 0 0 0 −sθ

 vs (27)

From equations (24) and (26), the following expres-
sion can be obtained:[

vO2

ω

]
= Jovs (28)

where

Jo =


1 0 0 d · cθcψ −d · sθsψ
0 1 0 0 −d · cψ
0 0 1 −d · sθcψ −d · cθsψ
0 0 0 0 cθ
0
0

0
0

0
0

1
0

0
−sθ

 (29)

Substituting equation (28) into equation (22) yields

vl=JlJovs = J4×5vs (30)

where J4×5 is a 4 × 5 velocity Jacobian matrix. This
reflects the mapping relationship between the driving

velocity vli (i=1,2,3,4) of the rods and variation veloc-
ity vs of the generalized coordinates.

The y axis component yO1 of the position vector O1

of the sliding platform center is regarded as the func-
tion of the generalized coordinates xD, yD, zD, θ, ψ. By
differentiating yO1 of equation (7), the driving velocity
vO1 along guide direction is obtained as

vO1 = JO1vs (31)

where

JO1=
[

0 1 0 0 −d · cψ
]

(32)

When ẋD, ẏD, żD, θ̇, ψ̇ are known, the driving
velocities of each driving rod and sliding platform can
be obtained from equations (30) and (31).

The driving velocities obtained above are all relative
to the coordinate system {O}. The driving velocities
O1vli (i=1,2,3,4) of each rod relative to the sliding plat-
form {O1} can be expressed as

O1vli=vli − vO1nO1 · ni=vli − JO1vsnO1 · ni

O1vl=vl − JO1vs


nO1 · n1

nO1 · n2

nO1 · n3

nO1 · n4

=J′4×5vs.
(33)

where

J′4×5=

J4×5 −


nO1 · n1

nO1 · n2

nO1 · n3

nO1 · n4

JO1


4×5

(34)

where nO1 =
[

0 1 0
]T

is the unit vector in the y
axis direction.

3.4 The Acceleration Analysis of the
5-DOF GHMT

Suppose that a and ε are the corresponding linear ac-
celeration vector and angular acceleration vector of the
MP, respectively.

a =
[
ax ay az

]T
ε =

[
εx εy εz

]T
A =

[
a ε

]T (35)

Suppose that there are 2 vectors η and ς and a skew-
symmetric matrix η̂ as follows:

η=

 ηxηy
ηz

 , ς=
 ςxςy
ςz

 , η̂=

 0 −ηz ηy
ηz 0 −ηx
−ηy ηx 0

 (36)
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Suppose that ali is the acceleration along the rods
ni (i=1, 2, 3, 4) direction. By differentiating equation
(21) with respect to time, the expression of ali can be
given as

ali=
[
nT
i (ei × ni)

T
] [a
ε

]
+
[
vTO2 ωT

]
Hi

[
vO2

ω

]
(37)

where

Hi=
1

li

[
−n̂2

i n̂2
i êi

−êin̂
2
i liêin̂i + êin̂

2
i êi

]
6×6

(38)

By differentiating equations (24) and (27) with re-
spect to time and considering equations (28) and (29),
we obtain the expression of acceleration A of the MP.

A = Joas + vTs hvs = Joas +


vTs h1vs
vTs h2vs

...
vTs h6vs

 (39)

where

as =
[
ẍD ÿD z̈D θ̈ ψ̈

]T
h =

[
h1 h2 · · · h6

]T (40)

where hi is the ith 5× 5 Hessian matrix:

h1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −d · sθcψ −d · cθsψ
0 0 0 −d · cθsψ −d · sθcψ



h2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 d · sψ



h3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −d · cθcψ d · sθsψ
0 0 0 d · sθsψ −d · cθcψ



h4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −sθ
0 0 0 0 0



h5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



h6 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −cθ
0 0 0 0 0



(41)

By differentiating equation (31) with respect to time,
the acceleration of the sliding platform along the guide
direction can be expressed as

aO1 = JO1as + vTs hO1vs (42)

where hO1 is a 5× 5 Hessian matrix.

hO1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 d · sψ

 (43)

When ẋD, ẏD, żD, θ̇, ψ̇ and ẍD, ÿD, z̈D, θ̈, ψ̈ are
known, the acceleration of each driving rod can be ob-
tained from equations (37) and (42).

4 The Dynamic Model of the
5-DOF GHMT

The velocity of the end of each limb on the MP can be
expressed as

vi = ωli × lini + O1vlini + vO1nO1 (44)
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where ωli is the angular velocity of limb i, and nO1 is
the unit direction vector of the driving velocity along
the guide direction.

Cross multiplying ni at both sides of equation (44)
gives

ni × vi
= ni × (ωli × lini) + ni × O1vlini + ni × vO1nO1

= liωli − lini (ni · ωli) + ni × vO1nO1

(45)
For the RPU limbs, i.e. limb i (i=1,3) has no rota-

tion around the rod, thus ωli · ni = 0.

ωli =
1

li
(ni × vi − ni × vO1nO1)

=
1

li
(ni × vi − vO1n̂inO1)

(46)

By substituting equations (20), (28) and (31) into
equation (46), ωli (i=1, 3) can be derived as

ωli = 1
li
{[ni × (vO2 + ω × ei)]− n̂inO1JO1vs}

= 1
li

{[
n̂i −n̂iêi

]
Jo − n̂inO1JO1

}
vs

= Jωivs
(47)

where i=1, 3, and

Jωi =
1

li

{[
n̂i −n̂iêi

]
Jo − n̂inO1JO1

}
(48)

By differentiating equation (46), the angular accel-
eration εli of limb i (i=1, 3) is

εli = [ṅi×vi+ni×v̇i−(aO1ni+vO1ṅi)×nO1]
li

−ωli
O1vli

li

(49)

The two revolute pairs R of the Hooke hinges U on
the UPS limbs, i.e. limb i (i=2, 4) are denoted as Rij

(j =1, 2). The angular velocity of limb i (i=2, 4) can
be expressed as:

ωli = θ̇i1Ri1 + θ̇i2Ri2 , Ri2 =
Ri1×ni

|Ri1×ni| (50)

where θ̇i1 , θ̇i2 are magnitude of the angular veloci-
ties of the Ri1, Ri2 (i=2, 4), respectively; Ri1,Ri1 are
the unit direction vector of the Ri1, Ri2, respectively,

where Ri1 =
[

1 0 0
]T

.
Cross multiplying l in i (i=2, 4) at both sides of equa-

tion (50) gives

θ̇i1Ri1 × lini + θ̇i2Ri2 × lini

= ωli × lini = vi − O1vlini − vO1nO1

= −
{[
n̂2
i − n̂2

i êi
]
Jo − n̂2

inO1JO1

}
vs

(51)

Dot multiplying Ri2 at both sides of equation (51),
we obtain

θ̇i1 (Ri1 × lini) ·Ri2

= −RT
i2

{[
n̂2
i − n̂2

i êi
]
Jo − n̂2

inO1JO1

}
vs

(52)

Dot multiplying Ri1 at both sides of equation (51),
we obtain

θ̇i2 (Ri2 × lini) ·Ri1

= −RT
i1

{[
n̂2
i − n̂2

i êi
]
Jo − n̂2

inO1JO1

}
vs

(53)

Equations (52), (53) lead to

θ̇i1 =
{[n̂2

i −n̂2
i êi]Jo−n̂2

inO1JO1}vs·Ri2

(Ri1×Ri2)·lini
,

θ̇i2 = −
{[n̂2

i −n̂2
i êi]Jo−n̂2

inO1JO1}vs·Ri1

(Ri1×Ri2)·lini

(54)

Combining equations (50), (54), (28), (31) and (33),
we obtain

ωli = θ̇i1Ri1 + θ̇i2Ri2

=
(Ri1×Ri2)×(vi−O1vlini−vO1nO1)

lini·(Ri1×Ri2)

= Jωivs

(55)

where i=2, 4.

Jωi =
(Ri1R

T
i2−Ri2R

T
i1){[n̂2

i −n̂
2
i êi]Jo−n̂2

inO1JO1}
(Ri1×Ri2)·lini

(Ri1 ×Ri2)×
(
vi − O1vlini − vO1nO1

)
=
(
Ri1R

T
i2 −Ri2R

T
i1

)
{[

n̂2
i − n̂2

i êi
]
Jo − n̂2

inO1JO1

}
vs

(56)
By differentiating equation (55), the angular accel-

eration εli of limb i (i=2,4) is

εli=


−θ̇i1Ri2 ×

(
vi − O1vlini − vO1nO1

)
+ (Ri1 ×Ri2)

×
(
ai − O1alini − O1vliωli × ni

−aO1nO1

)


·(lini · (Ri1 ×Ri2))
−1

−ωli ·
{

(vlini + liωli × ni) · (Ri1 ×Ri2)

−θ̇i1lini ·Ri2

}
·(lini · (Ri1 ×Ri2))

−1

(57)
The parameters of two components of the mecha-

nism, the oscillating rod, and the telescopic rod, as
shown in Figure 6, are listed in Table 2.
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Table 2: The kinematic parameters of the oscillating
rod and the telescopic rod (i=1, 2, 3, 4)

Parameters Description

lfi distance from the oscillating rod
centroid to the end of the limb

lmi distance from the telescopic rod
centroid to the end of the limb

vfi, afi velocity and acceleration of the os-
cillating rod centroid, respectively

vmi, ami velocity and acceleration of the
telescopic rod centroid, respec-
tively

Both the oscillating rod and the telescopic rod have
the same angular velocity and angular acceleration.

The velocity of the oscillating rod centroid of each
limb is

vfi = ωli × nilfi + vO1nO1 = (nO1JO1 − lfin̂iJωi) vs
(58)

The following equations can be obtained.[
vfi
ωli

]
= Jfivs (59)

where

Jfi =

[
nO1JO1 − lfin̂iJωi

Jωi

]
(60)

The linear acceleration of the oscillating rod centroid
of each limb is

afi = εli × nilfi +ωli × (ωli × ni) lfi + nO1aO1 (61)

The velocity of the telescopic rod centroid of each
limb is

vmi = ωli × ni (li − lmi) + O1vlini + vO1nO1

=


− (li − lmi) n̂iJωi

+
[
nin

T
i − nin

T
i êi
]
Jo

−n̂2
inO1JO1

 vs

(62)

The following equations can then be obtained.[
vmi

ωli

]
= Jmivs (63)

where

Jmi =



− (li − lmi) n̂iJωi

+
[
nin

T
i − nin

T
i êi
]
Jo

−n̂2
inO1JO1


Jωi

 (64)

The linear acceleration ami (i=1, 2, 3, 4) of tele-
scopic rod centroid of each limb is

ami = εli × ni (li − lmi) + ωli × (ωli × ni) (li − lmi)
+ O1alini + 2 · (ωli × ni)

O1vli + aO1nO1

(65)
The dynamic parameters of the oscillating rod and

the telescopic rod are shown in Table 3.

Table 3: The dynamic parameters of the oscillating rod
and the telescopic rod (i=1, 2, 3, 4)

Parameters Description

Gfi The gravity vector of the os-
cillating rod

ffi, nfi The inertia force and inertia
moment of the oscillating rod,
respectively

Gmi The gravity vector of the tele-
scopic rod

fmi, nmi The inertia force and inertia
moment of the telescopic rod,
respectively

GO1, GO The gravity of the sliding plat-
form and the MP, respectively

fO, nO The inertia force and inertia
moment of MP, respectively

fO1 The inertia force of the sliding
platform

FO, TO The external force and the ex-
ternal moment applied to the
MP, respectively

mfi, mmi The masses of the oscillating
rod and the telescopic rod, re-
spectively.

mO1, mO2 The masses of the sliding plat-
form and the MP, respectively

md The mass of the motorized
spindle

The relationships of the dynamic parameters in Ta-
ble 3 are as follows:

Gfi = mfig, ffi = −mfiafi

Gmi = mmig, fmi = −mmiami

GO1 = mO1g, GO = (mO2+md) g

fO1=−mO1aO1=−mO1aO1nO1

fO=− (mO2+md)a,mi = ri
|ri|

nfi = −O
DiR

iIfi
O
DiR

Tεli − ωli×
(
O
DiR

iIfi
O
DiR

Tωli

)
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nO =−R
(
O2IO2 + O2Id

)
RTε

−ω ×
[
R
(
O2IO2 + O2Id

)
RTω

]
nmi = −O

DiR
iImi

O
DiR

Tεli−ωli×
(
O
DiR

iImi
O
DiR

Tωli

)
O
DiR =

[
ni ×mi ni × (ni ×mi) ni

]
(66)

where O2IO2 and O2I d are the moments of inertia of
the MP and motorized spindle relative to the moving
coordinate system {O2}; iI fi and iImi are the mo-
ments of inertia of the oscillating rod and telescopic
rod of the each limb relative to the centroid body-fixed
coordinate system {D i}. Moreover, O

DiR is the rotation
matrix of the centroid body-fixed coordinate system
relative to the coordinate system {O}.

The centroid body-fixed coordinate system {D i} is
connected to the centroid of each limb, where zDi axis
is parallel to n i, while xDi axis is parallel to n i ×m i.

Based on the principle of virtual work, the following
equation was obtained:

FT
q
O1vl+FO1vO1 + (fO1 + GO1) · vO1nO1

+
[
FT

O + fTO + GT
O TT

O + nT
O

] [ vO2

ω

]

+
i=4∑
i=1


[
fTfi+GT

fi nT
fi

] [ vfi
ωli

]
+
[
fTmi+GT

mi nT
mi

] [ vmi

ωli

]
=0

(67)

where F q =
[
Fq1 Fq2 Fq3 Fq4

]T
is the four-

dimensional vector comprised of the driving force of
each rod in the mechanism, and FO1 is the driving
force along the guide direction.

By substituting equations (59) and (63) into equa-
tion (67) and combining equations (28) and (31), we
obtain

FT
q
O1vl+FO1JO1vs + JO1vs ((fO1 + GO1) · nO1)

+
[
FT

O + fTO + GT
O TT

O + nT
O

]
Jovs

+
i=4∑
i=1

([
fTfi+GT

fi nT
fi

]
Jfivs

+
[
fTmi+GT

mi nT
mi

]
Jmivs

)
=0

(68)

From equations (68) and (33), the following equation

is obtained:[
Fq

FO1

]
=

−

([
J′4×5
JO1

]−1
5×5

)T



((fO1 + GO1) · nO1)JT
O1

+


Jo

T

[
FO + fO + GO

TO + nO

]

−
i=4∑
i=1

 JT
fi

[
ffi+Gfi

nfi

]
+JT

mi

[
fmi+Gmi

nmi

]





(69)

The dynamics of the mechanism can be solved from
equation (69).

5 Verification of the Dynamic
Model

5.1 Dynamics Simulation with Matlab

With the developed model, dynamics simulation was
conducted with Matlab. The parameters of the ma-
chine tool are shown in Table 4. With the parameters,
the ranges of motion of the machine tool are deter-
mined, as listed in Table 5.

Table 4: The parameters of the machine tool (i=1, 2,
3, 4)

Parameters Value

a, b, c, d 1.025m, 0.925m, 0.425m,
0.470m

lfi, lmi 0.125m, 0.725m
l10, l20, l30, l40 1.765m, 1.790m, 1.790m,

1.790m
l1max, l1min 1.890m, 1.640m

l2max, l3max, l4max 1.915m, 1.915m, 1.915m
l2min, l3min, l4min 1.665m, 1.665m, 1.665m

mO1, mO2 1405.35kg, 265.20kg
md, mmi, mfi 77.91kg, 60.95kg, 86.53kg

O2IO2 diag
(
13.77 10.35 23.67

)
kg·m2

O2Id diag
(
0.72 0.72 0.61

)
kg · m2

iImi diag
(
15.41 15.41 0.14

)
kg · m2

iIfi diag
(
27.78 27.78 0.17

)
kg ·m2

FO

[
500 500 500

]T
N

TO

[
500 500 500

]T
N · m

Assuming the cutter moves from the initial position
and orientation (0, 0, −2.154 m, 0◦, 0◦) with different
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accelerations (here, 0.1 m/s2, 0.1 m/s2 , −0.1 m/s2 ,
4◦/s2 , and 4◦/s2 , respectively). By substituting the
parameters from Table 4 into the kinematic model and
dynamic model, we obtained the inverse solutions of
the position, velocity, the acceleration, and the varia-
tion curve of the driving force with time using Matlab
programming (Figure 7).

Table 5: The range of motion of the MP

Description Value

The range of z -
displacement

[−0.131m, 0.133m]

The maximum and mini-
mum displacements along x
direction at z=−1.684m.

−0.357m, 0.787m

The maximum and mini-
mum angles around x axis
at z=−1.684m.

−17.522◦, 17.522◦

The maximum and mini-
mum angles around y axis
at z=−1.684m.

−18.194◦, 17.522◦
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5.2  Dynamic simulation with ADAMS 
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4%. The results are consistent within the error range, 

which further shows the validity of the kinematic and 

dynamic models of the GHMT. 

6  A Case Study 

Figure 9 shows a drilling hole operation planned on a 

slender structural part, with a machining simulation 

model showing in Figure 10. 
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5.2  Dynamic simulation with ADAMS 

An ADAMS model was also developed with the 

defined material properties and the kinematic pairs. The 

same motion described in Section 5.1 is used to drive the 

mechanism. The inverse solutions of the position, 

velocity, the acceleration, and the variation curves of the 

driving forces were obtained in the post-processing 

module, as shown in Figure 8. 
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Figure 8: The kinematics and dynamics results of the
GHMT obtained from ADAMS

We found that the kinematic and dynamic results
obtained from analytical model of the GHMT in Fig-
ure 7 and those results using the ADAMS simulation
showing in Figure 8 agree generally well. There are
very small difference among them, which was caused by
errors, such as the establishment of the machine tool
model, measurements, and the ADAMS fitting driving
function.

Maximum error value occurs at driving force FO1,
which is equal to 4.6%. The rest error values are in
the range of 4%. The results are consistent within the
error range, which further shows the validity of the
kinematic and dynamic models of the GHMT.

6 A Case Study

Figure 9 shows a drilling hole operation planned on a
slender structural part, with a machining simulation
model showing in Figure 10.

The machining process is described in Table 6 for
the machining of two holes. By repeating Steps 2-7, the
machining process for the rest of the holes is completed.
We assumed that the process was uniform in every step,
so the ψ and θ angles of the MP were always 0, and
the resistance of the cutter along the positive z axis
direction in the drilling process was always FO=10000
N.

Let the parameters of the machine tool take the val-
ues in Table 4. Using the path identified in Table 6, the
motion equations were programmed based on ADAMS.
The variation curves of the displacements, velocities,
accelerations, and driving forces of the hybrid machine
tool were obtained, as shown in Figures 11 and 12.
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5.2 Dynamic simulation with ADAMS

An ADAMS model was also developed with the
defined material properties and the kinematic pairs. The
same motion described in Section 5.1 is used to drive the
mechanism. The inverse solutions of the position,
velocity, the acceleration, and the variation curves of the
driving forces were obtained in the post-processing
module, as shown in Figure 8.
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Figure 8: The kinematics and dynamics results of the
GHMT obtained fromADAMS

We found that the kinematic and dynamic results
obtained from analytical model of the GHMT in Figure 7
and those results using the ADAMS simulation showing
in Figure 8 agree generally well. There are very small
difference among them, which was caused by errors,
such as the establishment of the machine tool model,
measurements, and the ADAMS fitting driving function.
Maximum error value occurs at driving force FO1, its

value is 4.6%. The rest error values are in the range of
4%. The results are consistent within the error range,
which further shows the validity of the kinematic and
dynamic models of the GHMT.

6 A Case Study

Figure 9 shows a drilling hole operation planned on a
slender structural part, with a machining simulation
model showing in Figure 10.

Figure 9: The slender structural part
Figure 9: The slender structural part
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Figure 10: The machining simulation model

Figure 10: The machining simulation model

Table 6: The processing steps for drilling holes

Step Displacements of the cutter
/mm

Moving direction of
the cutter

Running time
/s Executive action of the cutter

1 500/200/200 z/+x/+y 3 Reaching the top of the first hole from the initial
position

2 300 z 5 Drilling the first hole
3 300 z 3 Retracting the cutter
4 400/400 x/+y 4 Reaching the top of the second hole
5 300 z 5 Drilling the second hole
6 300 z 3 Retracting the cutter
7 400/1000 x/+y 5 Reaching the top of the third hole

The machining process is described in Table 6 for the
machining of two holes. By repeating Steps 2-7, the
machining process for the rest of the holes is completed.
We assumed that the process was uniform in every step,
so the  and  angles of the MP were always 0, and
the resistance of the cutter along the positive z axis
direction in the drilling process was always FO=10000 N.
Let the parameters of the machine tool take the values

in Table 4. Using the path identified in Table 6, the
motion equations were programmed based on ADAMS.
The variation curves of the displacements, velocities,
accelerations, and driving forces of the hybrid machine
tool were obtained, as shown in Figures 11 and 12.

(a) The displacement

(b) The velocity

(c) The acceleration

Figure 11: The kinematic variations of the drilling process of

the hybrid machine tool

Figure 11 shows the variation laws of the displacement,

Figure 10: The machining simulation model

Figure 11 shows the variation laws of the displace-
ment, velocity, and acceleration when the hybrid ma-
chine tool drills the first 4 holes. Analyzing Figure 9
reveals that for the whole process, the displacement
s2, velocity v l2, and acceleration a l2 were equal to the
displacement s4, velocity v l4 , and acceleration a l4 , re-
spectively. This is consistent with the structural sym-
metry and motion symmetry of limbs 2 and 4.

The displacement s1, velocity v l1, and acceleration
a l1 are different from the displacement s3, velocity v l3,
and acceleration a l3, respectively. This is consistent
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Table 6: The processing steps for drilling holes

Step Displacements of the
cutter /mm

Moving direction
of the cutter

Running
time/s

Executive action of the cutter

1 500/200/200 −z/+x/+y 3 Reaching the top of the first hole from
the initial position

2 300 −z 5 Drilling the first hole
3 300 +z 3 Retracting the cutter
4 400/400 −x/+y 4 Reaching the top of the second hole
5 300 −z 5 Drilling the second hole
6 300 +z 3 Retracting the cutter
7 400/1000 +x/+y 5 Reaching the top of the third hole

with the structural parameters a 6= b in the sliding
platform and the motion asymmetry of limbs 1 and 3.
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Figure 11: The kinematics and dynamics results of the
GHMT obtained from ADAMS

In the 3-8 s, 15-20 s, 28-33 s, and 40-45 s drilling

stages and in the 8-11 s, 20-23 s, 33-36 s, and 45-
48 s retracting stages, the variation tendencies of the
displacement, velocity, and acceleration of the paral-
lel mechanism are basically the same. We can clearly
distinguish the 4 hole-drilling processes and cutter re-
traction processes. The direction of the guide did not
change and its velocity and acceleration vanish. This
coincides with the actual processing actions.

In the 0-3 s, 11-15 s, 23-28 s, and 36-40 s move-
ment stages along the guide direction, the differences
between limbs 1 and 3 and between limbs 2 and 4 are
obvious. There are velocity and acceleration variations
along the guide direction. There is no violent fluctua-
tion in the position, velocity, and acceleration through-
out the whole process. This indicates that the dynamic
performance of the machine tool is better than other
machine tools that are currently available.

The variation of the driving forces of the machine
tool is shown in Figure 12. The magnitudes of the
driving forces Fq2 and Fq4 are equal throughout the
machining process, which is in agreement with the sit-
uation where the structure and motion of limbs 2 and 4
are symmetrical. The magnitudes of the driving forces
Fq1 and Fq3 are different, which is in agreement with
the difference of the distance a 6= b between the limbs 1
and 3 and the center in the sliding platform and move-
ment difference.

The driving force FO1 along the guide direction is
small compared with the driving force Fqi, thus the
load is small along the guide direction.
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manipulator is studied, with due consideration on both 
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conducted for a novel 3T2R GHMT of a 2-RPU+2-UPS 

configuration. The dynamic model of the machine tool 

was developed using the principle of virtual work based 

on the kinematic model. The model was validated by 

comparing the modeling results with MSC Adams 

simulation. A case study is included to show the 
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Figure 12: The variations of the driving forces

The driving forces Fqi(i=1, 2, 3, 4) are the largest
and relatively stable in the 3-8 s, 15-20 s, 28-33 s, and
40-45s drilling stages. The driving forces Fqi(i=1, 2, 3,
4) are smaller and relatively stable in the 8-11 s, 20-23
s, 33-36 s, and 45-48 s cutter retraction stages, which is
in agreement with practical engineering. The driving
force FO1 has obvious changes in the 0-3 s, 11-15 s,
23-28 s, and 36-40 s guide sliding stages. The driving
force FO1 drives the 2-RPU+2-UPS parallel structure
to move.

7 Discussion and Conclusions

In this work, the dynamic modeling of a hybrid ma-
nipulator is studied, with due consideration on both

kinematics and dynamics. The modeling work is con-
ducted for a novel 3T2R GHMT of a 2-RPU+2-UPS
configuration. The dynamic model of the machine tool
was developed using the principle of virtual work based
on the kinematic model. The model was validated by
comparing the modeling results with MSC Adams sim-
ulation. A case study is included to show the applica-
tion of the model in the determination of driving forces
in machining.

The 5-DOF hybrid manipulator is proposed for ma-
chining of long structures. For machining applications,
the dynamic performance is affected by a number of
factors, for example, the workpiece material properties,
the stiffness of the machine, among others. This paper
focuses on the dynamics of the manipulator only. More
comprehensive study on machining dynamics could be
further considered upon the model developed in this
work. In this light, the stiffness modeling of the ma-
nipulator is needed and can be obtained with a variety
of available approaches (Wu et al. (2015a), Pashkevich
et al. (2009)). These works are tasks of future study.
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