“A Proactive Strategy for Safe Human-Robot Collaboration based on a Simplified Risk Analysis”

Authors: Audun Sanderud, Trygve Thomessen, Hisashi Osumi and Mihoko Niitsuma,
Affiliation: PPM AS and Chuo University, Tokyo
Reference: 2015, Vol 36, No 1, pp. 11-21.

Keywords: Safe Human-Robot Collaboration, Risk Field, Risk Analysis

Abstract: In an increasing demand for human-robot collaboration systems, the need for safe robots is crucial. This paper presents a proactive strategy to enable an awareness of the current risk for the robot. The awareness is based upon a map of historically occupied space by the operator. The map is built based on a risk evaluation of each pose presented by the operator. The risk evaluation results in a risk field that can be used to evaluate the risk of a collaborative task. Based on this risk field, a control algorithm that constantly reduces the current risk within its task constraints was developed. Kinematic redundancy was exploited for simultaneous task performance within task constraints, and risk minimization. Sphere-based geometric models were used both for the human and robot. The strategy was tested in simulation, and implemented and experimentally tested on a NACHI MR20 7-axes industrial robot.

PDF PDF (3832 Kb)        DOI: 10.4173/mic.2015.1.2

DOI forward links to this article:
[1] Audun Ronning Sanderud, Mihoko Niitsuma and Trygve Thomessen (2015), doi:10.1109/ETFA.2015.7301542
[2] Ana M. Djuric, R.J. Urbanic and J.L. Rickli (2016), doi:10.4271/2016-01-0337
[3] Azfar Khalid, Pierre Kirisci, Zied Ghrairi, Klaus-Dieter Thoben and Jürgen Pannek (2016), doi:10.1007/s12159-016-0151-x
[4] John O. Oyekan, Windo Hutabarat, Ashutosh Tiwari, Raphael Grech, Min H. Aung, Maria P. Mariani, Laura López-Dávalos, Timothé Ricaud, Sumit Singh and Charlène Dupuis (2019), doi:10.1016/j.rcim.2018.07.006
[5] Nikolaos Nikolakis, Vasilis Maratos and Sotiris Makris (2019), doi:10.1016/j.rcim.2018.10.003
[6] Jing Fan (2020), doi:10.1177/1729881420925631
[7] Tom P. Huck, Nadine Munch, Luisa Hornung, Christoph Ledermann and Christian Wurll (2021), doi:10.1016/j.ssci.2021.105288
[8] Diego Rodriguez-Guerra, Gorka Sorrosal, Itziar Cabanes and Carlos Calleja (2021), doi:10.1109/ACCESS.2021.3099287
[9] Marike K. van den Broek and Thomas B. Moeslund (2024), doi:10.1145/3650117
[1] Ahuactzin, J.M. and Gupta, K.K. (1999). The kinematic roadmap: A motion planning based global approach for inverse kinematics of redundant robots, IEEE Transactions on Robotics and Automation. 15:653--669. doi:10.1109/70.781970
[2] Balan, L. and Bone, G.M. (2006). Real-time 3D collision avoidance method for safe human and robot coexistence, In IEEE International Conference on Intelligent Robots and Systems. pages 276--282. doi:10.1109/IROS.2006.282068
[3] Behnisch, K. (2008). White Paper Safe collaboration with ABB robots Electronic Position Switch and SafeMove, 2008. pages 1--45.
[4] Berenson, D. and Kuffner, J. (2011). Task Space Regions : A Framework for Pose- Constrained Manipulation Planning, Robotics Institute. Paper 1031. http://repository.cmu.edu/robotics/1031.
[5] Chesbrough, H.W. (2003). The Era of Open Innovation, MITSloan Management Review. 44:35--41. doi:10.1371/journal.pone.0015090
[6] Galambos, P. (2012). Vibrotactile Feedback for Haptics and Telemanipulation : Survey , Concept and Experiment, Acta Polytechnica Hungarica. 9(1):41--65.
[7] Guo, Z. and Hsia, T. (1990). Joint trajectory generation for redundant robots in an environment with obstacles, In Proceedings., IEEE International Conference on Robotics and Automation, volume1. pages 157--162. doi:10.1109/ROBOT.1990.125964
[8] Gupta, K. (2005). Path planning with general end-effector constraints: using task space to guide configuration space search, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. pages 1875--1880. doi:10.1109/IROS.2005.1545305
[9] Haddadin, S. and Albu-Schaffer, A. (2008). Evaluation of Collision Detection and Reaction for a Human-Friendly Robot on Biological Tissues, 6th IARP/IEEE-RAS/EURON Workshop on Technical Challenges for Dependable Robots in Human Environments.
[10] Haddadin, S., Albu-Schaffer, A., Frommberger, M., and Hirzinger, G. (2009). The “ DLR Crash Report ”: Towards a Standard Crash-Testing Protocol for Robot Safety - Part I : Results, In IEEE Intl. Conf. on Robotics and Automation. pages 272--279, 2009. doi:10.1109/ROBOT.2009.5152602
[11] Haddadin, S., Albu-Schaffer, A., Frommberger, M., and Hirzinger, G. (2009). The “ DLR Crash Report ”: Towards a Standard Crash-Testing Protocol for Robot Safety - Part II : Discussions, In IEEE International Conference on Robotics and Automation. pages 280--287, 2009. doi:10.1109/ROBOT.2009.5152711
[12] Hoffman, R.R., Johnson, M., Bradshaw, J.M., and Underbrink, A. (2013). Trust in Automation, Intelligent Systems, IEEE. 28(1):84--88. doi:10.1109/MIS.2013.24
[13] Khatib, O. (1985). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, In Robotics and Automation. Proceedings. 1985 IEEE International Conference on. pages 500--505. doi:10.1109/ROBOT.1985.1087247
[14] Koppula, H.S. and Saxena, A. (2013). Anticipating Human Activities using Object Affordances for Reactive Robotic Response, In Proceedings of Robotics: Science and Systems. 2013.
[15] KUKA. (2014). KUKA Lightweight Robot, 2014. http://www.kuka-labs.com/en/service_robotics/lightweight_robotics.
[16] Kulic, D. and Croft, E.a. (2006). Real-time safety for human–robot interaction, Robotics and Autonomous Systems. 54(1):1--12. doi:10.1016/j.robot.2005.10.005
[17] Lacevic, B. and Rocco, P. (2010). Kinetostatic danger field - a novel safety assessment for human-robot interaction, In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pages 2169--2174. doi:10.1109/IROS.2010.5649124
[18] Lacevic, B., Rocco, P., and Zanchettin, A.M. (2013). Safety Assessment and Control of Robotic Manipulators Using Danger Field, IEEE Transactions on Robotics. 29(5):1257--1270. doi:10.1109/TRO.2013.2271097
[19] Latombe, J.-C. and Barraquand, J. (1991). Robot Motion Planning: A Distributed Representation Approach, The International Journal of Robotics Research. 10(6):628--645. doi:10.1177/027836499101000604
[20] Mainprice, J. and Berenson, D. (2013). Human-robot collaborative manipulation planning using early prediction of human motion, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. pages 299--306. doi:10.1109/IROS.2013.6696368
[21] MRK-Systeme. (2014). KR 5 SI (SafeInteraction) Prospect, 2014. www.mrk-systeme.de_downloads_Prospekt_KR_5_SI_en.
[22] Muramatsu, Y., Niitsuma, M., and Thomessen, T. (2013). Building a cognitive model of tactile sensations based on vibrotactile stimuli, 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom). pages 149--154. doi:10.1109/CogInfoCom.2013.6719231
[23] Nakabo, Y. and Ishikawa, M. (1998). Visual impedance using 1 ms visual feedback system, In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), volume3. IEEE, pages 2333--2338. doi:10.1109/ROBOT.1998.680671
[24] NORSOK. (2001). NORSOK STANDARD Z-013N, September. 2001.
[25] Oriolo, G., Ottavi, M., and Vendittelli, M. (2002). Probabilistic motion planning for redundant robots along given end-effector paths, In IEEE/RSJ International Conference on Intelligent Robots and Systems, volume2. pages 1657--1662. doi:10.1109/IRDS.2002.1043993
[26] Patel, R. and Shadpey, F. (2005). Control of Redundant Robot Manipulators, Springer.
[27] Petric, T. and Zlajpah, L. (2013). Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem, Robotics and Autonomous Systems. 61(9):948--959. doi:10.1016/j.robot.2013.04.019
[28] RethinkRobotics. (2013). Rethink Robotics, 2013. www.rethinkrobotics.com.
[29] RIA/ANSI. (1999). R15, 06 1999 American Standard for industrial Robots Safety Requirement. 1999.
[30] Sanderud, A.R. and Thomessen, T. (2014). Releasing the Synergy of Human-Robot Collaboration - Redundant Robotics in Practice, ACTA Tehnica Corviniensis - Bulletin of Engineering. 7(1):161--164.
[31] Sanderud, A.R., Thomessen, T., Hashimoto, H., Osumi, H., and Niitsuma, M. (2014). An approach to path planning and real-time redundancy control for human-robot collaboration, In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, pages 1018--1023. doi:10.1109/AIM.2014.6878214
[32] Sanderud, A. R.n. (2012). Task programming of Redundant Industrial Robots - A Virtually Extended Nullspace Formulation Verified Through Obstacle Avoidance, Master's thesis, Norwegian University of Science and Technology, 2012.
[33] Slovic, P. (1987). Perception of Risk, Science. 236(4799):280--285. doi:DOI: 10.2307/1698637
[34] SMErobotTM. (2013). The European Robot Initiative for Strengthening the Comprehensiveness of SMEs in Manufacturing, 2013. www.smerobot.org.
[35] Stilman, M. (2007). Task constrained motion planning in robot joint space, In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pages 3074--3081. doi:10.1109/IROS.2007.4399305
[36] Takimoto, A., Hashimoto, H., and Niitsuma, M. (2014). Effective destination determination for Semi-Autonomous Smart Electric Wheelchair Based on History of Human Activity, In Industrial Informatics (INDIN), 2014 12th IEEE International Conference on. pages 769--775. doi:10.1109/INDIN.2014.6945609
[37] Thomessen, T. and Niitsuma, M. (2013). Cognitive Human-Machine Interface with multi- modal man-machine communication, In 4th IEEE International Conference on Cognitive Intocommunications. pages 873--876.
[38] Tsuji, T., Akamatsu, H., and Kaneko, M. (1997). Non-contact impedance control for redundant manipulators using visual information, In Proceedings of International Conference on Robotics and Automation, volume3. pages 2571--2576. doi:10.1109/ROBOT.1997.619348
[39] Zhang, Y. and Wang, J. (2004). Obstacle Avoidance for Kinematically Redundant Manipulators Using Dual Neural Network, IEEE Transactions on Systems Man and Cybernetics. 34(1):752--759. doi:10.1109/TSMCB.2003.811519
[40] Zlajpah, L. and Nemec, B. (2002). Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators, In IEEE/RSJ International Conference on Intelligent Robots and Systems, volume2. pages 1898--1903 doi:10.1109/IRDS.2002.1044033

  title={{A Proactive Strategy for Safe Human-Robot Collaboration based on a Simplified Risk Analysis}},
  author={Sanderud, Audun and Thomessen, Trygve and Osumi, Hisashi and Niitsuma, Mihoko},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}