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Abstract

In an increasing demand for human-robot collaboration systems, the need for safe robots is crucial. This
paper presents a proactive strategy to enable an awareness of the current risk for the robot. The awareness
is based upon a map of historically occupied space by the operator. The map is built based on a risk
evaluation of each pose presented by the operator. The risk evaluation results in a risk field that can
be used to evaluate the risk of a collaborative task. Based on this risk field, a control algorithm that
constantly reduces the current risk within its task constraints was developed. Kinematic redundancy was
exploited for simultaneous task performance within task constraints, and risk minimization. Sphere-based
geometric models were used both for the human and robot. The strategy was tested in simulation, and
implemented and experimentally tested on a NACHI MR20 7-axes industrial robot.
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1 Introduction

With the more open innovation model seen in the
later years (Chesbrough, 2003), Small and Medium En-
terprises (SMEs) have a growing importance in the
industry. These types of companies require robotic
equipment that is highly flexible, but also easy to
use, both with regards to programming and operation.
The most important approach to simple and flexible
use of robots is through Human-Robot Collaboration
(HRC)(Figure 1) and redundant robotics (Sanderud
and Thomessen, 2014). A HRC system must be de-
signed to fit the level of collaboration, but at any level
the system should allow the operator to focus fully on
his or her task, and not be concerned with where the
robot is, or its current task. The robot should au-
tonomously give the best assistance and avoid collisions
at all times. A reliable safety strategy is therefore vital.

The most widespread protection strategy practiced
in the industry is based on isolating robots from their

surrounding environments (RIA/ANSI, 1999). While
some HRC systems are commercially available, they
have some major limitations.

RethinkRobotics (2013) have developed the Baxter
system. Baxter is a double seven-axes arm, with a
fully integrated control system. It can be installed in
one hour and does not require any safety installations
beyond the built-in safety system. But with only 2.3
kg payload per arm the work is limited to very light
operations.

ABB have introduced the SafeMove system which is
designed to bring the operator closer to the industrial
robot (Behnisch, 2008). SafeMove operate with zones
in which the operator can move safely, and allows a
more efficient use of the robot. The robot will auto-
matically slow down as the operator approaches, and
go to a full stop if the operator is too close.

The SMErobotsTM initiative has done extensive re-
search on, and developed systems to simplify both the
industrial level programming and safety issues related
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Figure 1: A collaboration between a human and a
robot on a welding operation.

to industrial robot installations (SMErobotTM, 2013).

MRK-Systeme (2014) have a commercially available
safety system for selected low payload robots. The sys-
tem includes a capacitive cover for the robot, ensuring
a full stop if the operator comes in contact with it.
Moreover, the current safety standards allow very lim-
ited human-robot collaboration (RIA/ANSI, 1999).

A new standard covering collaborative robots is cur-
rently under development. The standard will allow
closer human-robot collaboration, given that a set of
performance control methods are implemented. Sepa-
ration monitoring is one of these performance control
methods. This is a system which at all times ensures
that the robot manipulator is at a certain distance from
the human operator to avoid injuries. Such a system
will require an advanced sensor system and algorithms
to reconfigure the robot manipulator based on sensor
readings. With separation monitoring in place, a com-
pany can do highly complex human-robot collaborative
tasks, reducing some of the pressure on programming
of the robot prior to the operation. Also larger en-
terprises, such as the car manufacturing industry, can
benefit from an efficient separation monitoring system.
Just imagine a production line with tens of robots, and
an operator walking amongst them, supervising and
making adjustment while in full operation. The chal-
lenge is however not to compromise the productivity
of the robot. A reasonable path-planning or real-time
control of the robot is therefore an important aspect.

Most contributions towards collision avoidance with
redundant robots are based on static or kinetostatic im-
ages. Systems finding a collision-free joint space path
(Latombe and Barraquand, 1991), and problems that
require maintaining end-effector constraints through-
out the path (Stilman, 2007; Gupta, 2005; Berenson
and Kuffner, 2011) have been explored. It is usually
distinguished between problems where a single goal is

specified (Ahuactzin and Gupta, 1999) and problems
where the entire end-effector path is predetermined
(Guo and Hsia, 1990; Oriolo et al., 2002). Applying
this, Lacevic and Rocco (2010) presented an approach
using Danger Fields based on a kinetostatic image of
the current situation. Mainprice and Berenson (2013)
used workspace occupancy predictions based on an ar-
ticulated motion library for the human. A system an-
ticipating human activities, and selecting the correct
response from the robot was presented by Koppula and
Saxena (2013). Zhang and Wang (2004) and Petrič and
Žlajpah (2013) both present high performance systems
that avoid collisions by enabling evasive maneuvers if a
danger is detected. Balan and Bone (2006) presented
an efficient human collision avoidance system. The sys-
tem used prediction models on both the robot and the
human to reduce the effect of non-instantaneous re-
sponse time. In both systems, however, the task perfor-
mance is easily compromised. Kulić and Croft (2006)
describe a safety system based on a danger index. The
system uses the danger index in a real-time trajectory
generator to re-plan its path if a danger threshold is
exceeded. These systems are all reactive and will ma-
nipulate the robot’s path strictly to avoid an imminent
collision. That is, when it is in a dangerous situation.

In our approach, we want to avoid the possible dan-
gerous situation all together. We overcome this by
building a cubic map of the work cell based on the
risk associated with every point in space. The risk as-
sociated with a certain pose for the robot is calculated
based on its occupied space. The robot will be enabled
with an awareness of the risk related to its current pose,
and planned path. If the risk is too high to accept, the
robot has the chance to re-plan its path, or change
its current pose. Based on this it can be more ”cau-
tious” if it is forced to operate in a highly risky area,
e.g. move slower, make sound- or light signals or give
vibrotactile feedback to the operator (Thomessen and
Niitsuma, 2013). Vibrotactile feedback is researched to
help in teleoperations, and shows a promising effect to
deliver important information to the operator (Galam-
bos, 2012; Muramatsu et al., 2013). This can easily
be adapted to pass information from the robot sys-
tem to the operator about the current risk, enabling
more system awareness. Most importantly, by being
proactive, the approach aims to reduce the number of
dangerous situations to avoid, by acquiring knowledge
about them at an early stage. The research of Hoffman
et al. (2013) show how important trust in automation
is, and how trust in machines can be related to inter-
personal trust. An important feature to maintain trust
is to avoid unexpected behavior by the robot. Avoiding
the situations where evasive maneuvers are necessary
could help enhance this important trust. A simplified
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risk model was implemented and experimentally tested
on a NACHI MR20 7-axes industrial robot. The results
illustrate the robots ability to avoid high risk areas in
the workspace.

2 Risk Analysis

One of the most fundamental attributes of a human re-
garding safety is the ability to make a judgment of risk
(Slovic, 1987). Different people accept different levels
of risk in their daily routines at work and at home. All
day, in every situation, there is a risk present. In a sim-
ple activity like crossing the road, we observe the fre-
quency and speed of the cars, the width of the road and
so on. We use these data, compare it to our physical
attributes and experience. The data goes through nu-
merous psychological and cognitive processes and tell
us whether to cross or not. If the parameters make us
not cross, we might walk along the road to search for
a change in some of the parameters. Along the road,
authorities may have implemented measures like traffic
lights or zebra stripes to create safer crossings. This is
all based on a risk analysis, and what level of risk we
are willing to accept.

The goal of any safety strategy is to reduce the risk.
In this research we use the definition of risk, set by
NORSOK (2001). In NORSOK z-013N risk is defined
as a combination of the probability of an event, and
the consequence of the event. Further, a risk analysis
is the process of using available information to identify
possible accidents and estimate the risk. The conse-
quence is a complex entity itself. The consequences of
an accident can impact several aspects of a company.
These include reduced production, personal injury, ma-
terial damage and the company’s reputation. Although
companies might prioritize the different consequences
differently, avoiding personal injury is generally con-
sidered the worst consequence. Most importantly in
an isolated case of a robot cell is to prioritize avoiding
human injury over reduced production and material
damage. To reduce the risk, one can implement what is
defined as Risk Reducing Measures (RRMs). In other
words, a safety strategy involves a number of RRMs.

In a HRC context, we identify four approaches to risk
reducing measures (Table 1). Either focused on the
human, or on the robot, and, either reducing the likeli-
hood, or the consequence. RRMs aimed at the human
includes fences, and light- and sound signals. These ac-
tions will remind the human of the danger associated
with approaching a moving robot. Thus making it less
likely that the human approaches the robot. This is the
most commonly used RRM today (RIA/ANSI, 1999).
The second common approach is aimed at the robots.
These include designing the robots to be less harmful,
like RethinkRobotics (2013) or the KUKA lightweight
Robot (KUKA, 2014). The system provided by MRK-
Systeme (2014) ensures that if an accident should oc-
cur, it will have very little consequence in a safety
perspective. Lightweight and slow robots will reduce
the consequence of an accident. Another RRM is to
implement control algorithms to automatically avoid
a human, like in the research of Lacevic and Rocco
(2010), Petrič and Žlajpah (2013) and Kulić and Croft
(2006). These avoidance algorithms would reduce the
likelihood for an accident. The last RRM approach is
likely never used in robotics. A RRM focused on the
human to reduce the consequence of an accident would
imply equipping the human with helmet, armor and
other protective gear. Although a common approach
in many other activities, it is extremely rare in robotics.
A safety system will often be a combination of several
RRMs. These are normally structured to be sequen-
tial based on which of the aforementioned consequences
have the highest priority. Regarding only productiv-
ity and personal injury, it is obvious that preventing
personal injuries has a higher priority. The robot fo-
cused consequence reducing RRMs will effectively pre-
vent personal injury, but might cause an all new conse-
quence; reduced productivity. This RRM should thus
be a ”last resort”-RRM. Table 2 lists a desired prior-
ity of RRMs. A proactive system could maintain the
productivity to a greater extent than a reactive sys-
tem. While an automatic emergency stop will reduce
the productivity, it is an important RRM to utterly
ensure safe human robot collaboration.

Our strategy for safe human-robot collaboration is
thus to create a proactive safety strategy by enabling

Table 1: Risk Reducing Measures for Robotic Systems

Reduce Likelihood Reduce Consequence

Human Focused
Fences and barriers

Light and Sound signals
Protective gear e.g.
Helmet and armor

Robot Focused
Obstacle avoidance systems

Proximity based emergency stop
Lightweight and slow robots

Contact detection
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Table 2: Priority for Risk Reducingf Measures

Priority Risk Reducing Measure

1 Proactive avoidance systems
2 Reactive avoidance systems
3 Proximity based emergency stop
4 Contact based emergency stop

the robot with a sense of risk. Not only to enable a con-
trol algorithm to reduce the risk, but to communicate
to the operator the current risk level. The operator
and robot will thus have a common awareness of the
present risk. In order to do this, we observe human ac-
tivity through time. The nature of the human activity
in a point in space provides the risk associated with
that point. The resulting map serves as a memory for
the robot of the risk associated with working or moving
in different areas in its workspace.

To calculate the risk associated with a point in space
at a given time, a risk analysis is necessary. As afore-
mentioned, risk is defined as the correlation between
likelihood and consequence. A risk analysis is therefore
divided into a likelihood analysis, and a consequence
analysis.

2.1 Consequence Analysis

Analyzing the consequence of an accident is a very
challenging task that many have already researched.
Haddadin et al. (2009a) and Haddadin et al. (2009b)
investigated and identified different contact scenarios
in a Human-Robot related accident. They identify
the five contact scenarios constrained, partially con-
strained and unconstrained impact, clamping and sec-
ondary impact. The last often caused by one of the
others, and might even be more severe. Some of these
scenarios were tested in a crash-test during which con-
tact forces, neck torques and other relevant data were
collected. The data classifies the severity of the im-
pacts. Haddadin and Albu-Schaffer (2008) also inves-
tigated injuries caused by sharp tools on the robot,
and developed a reactive avoidance system. A natu-
ral approach to measuring the danger is presented by
Kulić and Croft (2006). They compute a danger in-
dex based on factors affecting the impact force during
a potential collision. A simplified consequence analy-
sis will therefore include the parameters Limb veloc-
ity (vt) and Limb type factor (Lf ), as seen in (1). A
simplified model of critical areas of the human body
is developed based upon Haddadin et al. (2009a) and
Haddadin et al. (2009b). Where the torso and head
are the most critical and, the hands and feet are the
least critical area (Figure 2). Other factors that could

be implemented are the robots velocity and tool.

Figure 2: Map of limb factor areas used in the conse-
quence analysis. Red indicate a higher limb
factor, yellow a lesser.

C = Lf (1 + v2) (1)

2.2 Likelihood Analysis

The likelihood analysis is in this research based on
the visit frequency at a given point in space. It will
therefore evolve, according to the humans motion and
activity. While there are several examples on human
task recognition and classification (Koppula and Sax-
ena, 2013; Mainprice and Berenson, 2013), a great part
of the articulated human motion is not part of a task.
Movement like scratching the head, checking the time,
turning to see what that sound was, is generally diffi-
cult to classify. This motion is most of the time unpre-
dictable and inaccurate. Moreover, a tracked limb of
the human will seldom take the exact same path dur-
ing its next pass. The likelihood is therefore calculated
for the limb and its close proximity up to a maximum
distance, ρ, from the limb. This factor will also com-
pensate for smaller errors in sensor data readings of
limb positions. The resulting proximity factor, κ, is
found by:

κ =


ρ− δ
ρ

if δ ≤ ρ
0 otherwise

(2)

Where δ is the distance from a point in space to the
human limb, and ρ is the maximum distance from a
limb where the risk should be computed.
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We model the contribution from the likelihoods as
an exponentially decaying positive feedback with a re-
duction factor, γ,

yi = κC + yi−1γ (3)

where C is the result of the consequence analysis and
i is the iteration.

3 Risk Field

Let T be a human limb whose position and velocity
are defined by the vectors rt = (xt yt zt)

T and vt =
(vtx vty vtz)T . The δ from (2) is then δ = ‖r − rt‖,
where r = (x y z)T is an arbitrary point in space. The
velocity vectors magnitude is denoted vt = ‖vt‖. From
our consequence analysis (1) and risk analysis (3) we
can quantify the risk related to a single point in space.
The risk field created by a single moving human limb
at time i, RF (r)i, is then defined by (4) with κ from
(5).

RF (r)i = κLf (1 + v2t ) + γRF (r)i−1 (4)

κ =


ρ− ‖r− rt‖

ρ
if ‖r− rt‖ ≤ ρ

0 otherwise
(5)

While multiple limbs may pose a risk at r, it is nec-
essary to accumulate the risk posed by every limb. The
risk field is thus expanded and derived by super posi-
tioning. RF (r)i is then the sum of the risk posed by
all spheres for every limb (6). Each limb and sphere
will have a specified ρt and Lf,t. Each sphere of the
sphere-based geometry of the human is used to calcu-
late the risk. The total number of spheres, l, and their
radii, ρi, should be selected to best model the human
body.

RF (r)i =

l∑
t=1

κtLf,t(1 + v2t ) + γRF (r)i−1 (6)

κt =


ρ− ‖r− rt‖

ρt
if ‖r− rt‖ ≤ ρt

0 otherwise

The field RF (r)i is by definition a scalar field. Nev-
ertheless, a vector field can easily be constructed upon
it using its gradient (7).

−→
RF (r)i = RF (r)i

∇RF (r)i
‖∇RF (r)i‖

(7)

The
−→
RF (r)i vector is anchored in r and with the

direction of ∇RF (r)i. Its magnitude is set by the risk
level in r, RF (r)i.

4 Risk Field-Based Control

4.1 Control Principals

The control method bares many similarities to the clas-
sic potential field model (Khatib, 1985) or the avoid-
ance strategy of Zlajpah and Nemec (2002). The major
difference lies in the design of the potential field. While
the classical potential field model regards a single static
image of the obstacle, our model regards a variety of
parameters for the object, resulting in a quantified risk
measure. Further, the risk associated with areas in the
workspace is kept in the control systems memory. Al-
lowing the system to avoid risky areas, even though an
obstacle is not detected there at the current time.

In the avoidance strategy of Zlajpah and Nemec
(2002), an avoidance vector ∆pa is placed at the criti-
cal points of the robot, directly away from the object.
The avoidance vector is then mapped to joint space
via the transposed Jacobian. A critical point is defined
by the proximity of an object (Figure 3). The resem-
blance to the virtual impedance approach (Tsuji et al.,
1997; Nakabo and Ishikawa, 1998) is also clear. In this
method does the penetration depth in the critical area
determine the velocity and acceleration of the avoid-
ance vector. Much resembling the real-life impedance
control, considering physical contact between the robot
and an object. The difference to our method is quite
clear. The direction and magnitude of the avoidance
vector is selected directly from the risk field. A pre-
determined number of points on the robot is selected
to be examined for potential risk. Any observed point
pose a higher risk than accepted, will have an avoid-
ance vector with a magnitude and direction set by the
risk field (Figure 4).

From the safety perspective, our method is inspired
by the research of Kulić and Croft (2006) and Lacevic
et al. (2013). However, Kulić and Croft (2006) do not
consider task constraints, and thus neglects loss pro-
ductivity as a consequence. Although it is correct to
assume that reduced productivity is a less important
consequence than human injury or material damage.
The method thus holds from a pure safety perspective,
but not a human-robot collaborative perspective. The
method presented by Lacevic et al. (2013) considers
task constraints, but their Danger Field only observes
and analyzes the motion of the robot. The humans
motion and movement patterns are not included. The
system is reactive, which may cause more unexpected
maneuvers than necessary, reducing the operators trust
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Figure 3: Obstacle avoidance strategy on a 5-axes pla-
nar arm.

∆pa∆pa∆pa

∆pa
∆pa

∆pa

Figure 4: Wireframe of an industrial robot partially in
a risky area.

in the system. With our method’s memory of previous
human activity, the robot can plan its path from the
risk field, resulting in smoother motions. Even with a
reactive response to the risk field, the system will be
proactive because of the history that lies in the map.
Further, the robot task velocity can be controlled based
on the risk field and level of accepted risk. This aware-
ness of risk for the robot can then be communicated to
the human, further enhancing the trust.

4.2 Kinematic Control of Redundant
Robot

The redundancy resolution and control method in this
paper is an extension of the Null Space Projection
Method where a secondary task vector is projected
in the Null Space of the robot (Patel and Shadpey,
2005). The resulting velocity vector q̇ℵ is added to the
primary task’s joint velocity vector q̇T . The primary
task joint velocities is obtained from the primary task
cartesian velocities via the transposed Jacobian. The
classical Null Space formulation, at a velocity level, is
stated in (8), where ϑ is the joint velocities of the sec-
ondary task.

q̇ = q̇T + q̇ℵ = J†e ṗT + (I − J†eJe)ϑ (8)

ϑ = J†e ṗS

This method alone will not manipulate the robots
end effector, only produce self motion. The Virtually
Extended Null Space formulation was therefore used.
The method is described in previous work of the au-
thors (Sanderud, 2012; Sanderud et al., 2014), it will
however be recalled in the remainder of this section.

In the classical Null Space method with a 7-axes
robot, the dimension of the redundancy r, and also the
null space, is r = n−m, where n is the dimensions of
task space, and m the dimensions of joint space. Then
the kinematic chain of the robot is virtually extended
with a parallel to the cartesian space. For a 7-axes
robot, that mens that r = (n + m) −m = n = 7. A
projection in the Null Space of this virtually extended
joint space will thus provide a 7-dimensional motion, 6
of which are parallel to task space. The displacement
in these 6 axes (q̇v from (9)) is defined as ṗv, and is
added to the task velocities ṗT.

[
q̇s

q̇v

]
= (I − J†WJW )

[
ϑ
0

]
(9)

To keep within task constraints, a weighting ma-
trix ,W , is introduced in to the virtually extended
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part of the new Jacobian (10). The weighting ma-
trix is a diagonal positive-definite matrix of the form
W = diag

[
w1 w2 . . . wn

]
JW =

[
Je
JvW

]
(10)

With this, the joint velocities q̇ are then calculated
from (11).

[
q̇
˙̃qv

]
=

[
J†e (ṗT + ṗv)

0

]
+ (I − J†WJW )

[
ϑ
0

]
(11)

Regarding our industrial robot arm, a predefined set
of points along the arm is to be examined for a present
risk. The points on the manipulator with a present
risk receive an avoidance vector ∆pS . From section 3

we can use ∆pS = kp
−→
RF (r)i for corresponding points

in space, where kp is a real positive parameter. By
dividing with the sample time, ∆T , ∆pS becomes the
velocity ṗs that governs the evasive maneuver. The
joint velocities can be calculated via the pseudo inverse
for the respective points along the kinematic chain. ϑ
can then be computed as the sum of the joint velocities,
calculated at all points of interest (12). Where kv =
kp/∆T .

ϑ =
∑
S

J†s ṗs =
∑
S

kvJ
†
s

−→
RF (r)i (12)

The system structure is based on an interface to
the NACHI FD11 controller, manipulating the data
packages sent between the Main board and the servo
board. The native stability and dynamics control of the
NACHI controller is thus utilized. The system struc-
ture is further as described in Figure 5.

Trajectory
Generator

Inverse
Kinematics

Position
Controller

NACHI
MR20

Sensor
System

Secondary
Task interpr.

Inverse
Kinematics

W

Task
Formulation

Programmed
Path

Pnom qnom1 qref ∆q

q−

∆ps ∆qℵ

∆qnom2

Sensor Data

Figure 5: System structure with the secondary task in
an external feedback loop.

Although the control scheme used in this study is
the virtually extended null space, the information that
lies in the risk field can generally be used with other
schemes to. That is, both for real time collision avoid-
ance control, and path planning, prior to, and during
operation. Takimoto et al. (2014) presents a way to
predict human goal location when in motion, based on
a visit frequency map. Implementing this or similar
strategies could also provide a predictive model, based
on the likelihood analysis.

5 Simulations

5.1 Simulation Setup

The process of map design was tested through a two
part simulation. The first to investigate the impact in
the quantified risk in different situations. The second
part to investigate how the risk is degenerated over
time. Both parts include four limbs; two hands, and
two heads, each of which either move slowly, or fast
(Figure 6). The limbs were moved in a circular mo-
tion with constant speed throughout the first part (Fig-
ure 7). In the second part all limbs were removed, and
the risk was slowly degenerating (Figure 8).

Y
-A

x
is

X-Axis

R
isk

L
evel

v1
v2

v1
v2

A B

C D

Figure 6: Simulation setup.

In both simulations parameters were selected
to get results in a couple of seconds. The de-
sign parameters should be chosen carefully to
get the desired map behavior. For this sim-
ulation, the following parameters were used:
γ = 0.996, Lf =

[
1 1 0.5 0.5

]
, ρ = 300mm,

vt =
[
1 0.5 1 0.5

]
m/s.

5.2 Simulation Results

In the first part of the simulation it is clear that the
area frequently occupied by the fast moving head is the
most risky area for the robot the operate. A collision
with a humans head must be avoided. While it is also
moving fast, it would be less likely that the robot would
be able to do a successful evasive maneuver, should the
human head be detected in using an obstacle avoidance
system. Conversely, it can be seen that the space less
frequently occupied by the slow moving hand is barely
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considered risky. A slow moving hand can more easily
be avoided by the robot, if required. Although to be
avoided, but should a collision between the robot and
a human hand occur the potential outcome is signifi-
cantly less severe than a collision with the head.

A B

C D

A B

C D

A B

C D

t = 10s t = 25s

t = 70s

Figure 7: Simulated human activity with constant visit
frequency over time. A=Slow Head, B= Fast
Head, C=Slow Hand, D= Fast Hand. The
lines on the graph indicate sample times

The last simulation shows that how the risk is de-
generated over time. With the likelihood analysis (3),
the risk will drop faster in the beginning, but keep a
lower risk longer. Other approaches to get a different
deterioration can be selected based on e.g. the task.
With this approach it is suggested that the likelihood
of a limb reentering the space it just left is low, while
the risk should be degenerated slower over time. It is
nonetheless clear that if a limb has been occupying by
point in space in the past, there will always be a certain
risk it will do it again.

6 Experiments

6.1 Experimental setup

For the experiment, a NACHI MR20 7-axes industrial
robot was used with a NACHI FD11 controller. The
controller was interfaced with an in-house system al-
lowing manipulation of the controller’s internal com-
munication. An external PC running LabVIEW was
used to develop and execute the code. The object was
simulated in the LabVIEW code to ensure a predictable
risk field for evaluation purposes.

A B

C D

A B

C D

A B

C D

t = 385s t = 400s

t = 440s

Figure 8: Degeneration of risk over time. A=Slow
Head, B= Fast Head, C=Slow Hand, D=
Fast Hand. The lines on the graph indicate
sample times

6.2 Results

The purpose of the experiments was to investigate
how the robot would respond to the risk field. The
robot was programmed to move in a straight line,
from P1 to P2 (green line in Figure 9). The sim-
ulated task constraints gave the weighting matrix
W = diag

[
0 1 1 0 0 0

]
. The parameters

for the experiment were set to: γ = 0.981 Lf =
1 ρ = 150mm vt = 0.65m/s. An obstacle was mov-
ing in a clockwise motion along the small red circle at
∼ 0.650m/s. The outer red circle indicates the extent
of the risk field (ρ). The experiment was first ran along
its planned path as a reference path, then with a classi-
cal potential field approach. The moving obstacle was
designated a spherical potential field with radius = ρ.
The resulting path from one pass can be seen as the
yellow line. It is clear that the robot’s end-effector did
several sudden moves to avoid the frequently passing
obstacle. The risk field was then enabled and the fast
moving obstacle quickly built up a highly risky area
along its path. The blue line in Figure 9 shows the
resulting path with the risk field based control.

From the figure it can be seen that the new path
for the robot is not only in a less risky area than that
generated without the risk field, but it is also moving in
a single curve away from its planned path. This single
curve is less abrupt and may be experienced as a more
comfortable path for the operator, further enhancing
the trust.
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Table 3: Priority for Risk Reducing Measures

Control type Max Risk Reduction Total Risk Reduction Time [s]

Planned Path 173.59 - 5751.47 - 13
Obstacle avoidance 150.67 13.2% 4923.19 14.4% 13

Risk field based control 80.72 53.5% 2780.25 51.7 % 13

Z

X

Y

Figure 9: Paths taken by the robot with different con-
trol strategies.

We can also inspect the risk values throughout the
paths. Using the risk field as an evaluation method,
we can calculate the risk for the different paths. The
risk level through time can be seen in Figure 10. The
total and maximum risk through the path can be seen
in Table 3

Figure 10: Risk through time for the different
approaches.

It is clear that the general obstacle avoidance strat-
egy barely reduces the total and maximum risk com-
pared to the planned path, 13.2% and 14.4% reduction
respectively. A significant reduction is achieved using
the risk field. Both the maximum risk and total risk
are reduced more than 50% compared to the planned

path. The task is completed (P2 is reached) in the same
13 seconds for both approaches. Note that the risk is a
dimensionless number and must only be compared to
other risk values gathered using the same parameter
settings. From a control perspective the different mag-
nitudes are absorbed by the parameter kv in (12).The
total risk was in this experiment calculated with a sam-
ple time of 100ms.

7 Conclusion

In this paper we have presented proactive safety strat-
egy for human robot collaboration. The strategy is
based on a quantified measure of risk. We have identi-
fied different aproaches to Risk Reducing Measures in
robotic installations and placed our strategy amongst
these. A new approach to safe human-robot collabora-
tion was introduced using a risk field. The risk field is
based on an analysis of the human’s movement and the
consequence of a collision with different human limbs,
combined with a likelihood analysis. The risk field
can be used both in a control strategy, and to eval-
uate a robot’s path with regard to safety. Further, the
risk field based safety strategy is proactive, which can
improve the operators comfort of working alongside a
robot. The building and degeneration of the risk field
were simulated with a set of different parameters. The
Risk Field was then implemented on a NACHI MR20
7-axes industrial robot. Although only one experiment
were conducted, the method proved to be an efficient
approach to reduce the risk. Compared to a classical
obstacle avoidance approach, the risk through the path
was significantly reduced.
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