“Optimizing Adaptive Control Allocation With Actuator Dynamics”
Authors: Johannes Tjønnås and Tor A. Johansen,Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2008, Vol 29, No 2, pp. 69-76.
Keywords: Control allocation; Adaptive control; Nonlinear systems
Abstract: In this work we address the optimizing control allocation problem for an over-actuated nonlinear time- varying system with actuator dynamic where parameters affine in the actuator and effector model may be assumed unknown. Instead of optimizing the control allocation at each time instant, a dynamic approach is considered by constructing actuator reference update-laws that represent an asymptotically optimal allocation search. By using Lyapunov analysis for cascaded set-stable systems, uniform global/local asymptotic stability is guaranteed for the optimal equilibrium sets described by the system, the control allocation update-law and the adaptive update-law, if some persistence of exitation condition holds. Simulations of a scaled-model ship, manoeuvred at low-speed, demonstrate the performance of the proposed allocation scheme.
PDF (1033 Kb) DOI: 10.4173/mic.2008.2.4
DOI forward links to this article:
[1] (2016), doi:10.1002/9781118827789.app3 |
[1] Bodson, M. (2002). Evaluation of optimization methods for control allocation, J. Guidance, Control and Dynamics, 25:703-711 doi:10.2514/2.4937
[2] Buffington, J. M., Enns, D. F., Teel, A. R. (1998). Control allocation and zero dynamics, J. Guidance, Control and Dynamics. 21:458-464 doi:10.2514/2.4258
[3] Enns, D. (1998). Control allocation approaches, In Proc. AIAA Guidance, Navigation and Control Conference and Exhibit, Boston MA. pp. 98-108.
[4] Fossen, T. I. Blanke, M. (2000). Nonlinear output feed- back control of underwater vehicle propellers using feedback form estimated axial flow velocity, IEEE Journal of Oceanic Engineering. 2.2:241-255 doi:10.1109/48.838987
[5] Härkegård, O. (2002). Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation, In Proc. IEEE Conf. Decision and Control, Las Vegas NV.
[6] Johansen, T. A. (2004). Optimizing nonlinear control allocation, Proc. IEEE Conf. Decision and Control. Bahamas, pp. 3435-3440.
[7] Johansen, T. A., Fossen, T. I., Berge, S. P. (2004). Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming, IEEE Trans. Control Systems Technology, 12:211-216 doi:10.1109/TCST.2003.821952
[8] Johansen, T. A., Fossen, T. I., Tøndel, P. (2005). Efficient optimal constrained control allocation via multiparametric programming, AIAA J. Guidance, Control and Dynamics, 28:506-515 doi:10.2514/1.10780
[9] Lin, Y., Sontag, E. D., Wang, Y. (1996). A smooth converse lyapunov theorem for robust stability, SIAM Journal on Control and Optimization, 34:124-160 doi:10.1137/S0363012993259981
[10] Lindegaard, K. P. Fossen, T. I. (2003). Fuel-efficient rudder and propeller control allocation for marine craft: Experiments with a model ship, IEEE Trans. Control Systems Technology. 11:850-862 doi:10.1109/TCST.2003.815613
[11] Luo, Y., Serrani, A., Yurkovich, S., Doman, D., Oppenheimer, M. (2004). Model predictive dynamic control allocation with actuator dynamics, In Proceedings of the 2004 American Control Conference, Boston, MA.
[12] Luo, Y., Serrani, A., Yurkovich, S., Doman, D., Oppenheimer, M. (2005). Dynamic control allocation with asymptotic tracking of time-varying control trajectories, In Proceedings of the 2005 American Control Conference, Portland, OR.
[13] Pivano, L., Johansen, T. A., Smogeli, Ø. N., Fossen, T. I. (2007). Nonlinear Thrust Controller for Marine Propellers in Four-Quadrant Operations, American Control Conference.ACC, New York, USA.
[14] Pivano, L., Smogeli, Ø. N., Johansen, T. A., Fossen, T. I. (2006). Marine propeller thrust estimation in four-quadrant operations, 45th IEEE Conference on Decision and Control, San Diego, CA, USA.
[15] Poonamallee, V., Yurkovich, S., Serrani, A., Doman, D., Oppenheimer, M. (2005). Dynamic control allocation with asymptotic tracking of time-varying control trajectories, In Proceedings of the 2004 American Control Conference, Boston, MA.
[16] Sørdalen, O. J. (1997). Optimal thrust allocation for marine vessels, Control Engineering Practice, 5:1223-1231 doi:10.1016/S0967-0661(97)84361-4
[17] Sørensen, A. J., Ådnanes, A. K., Fossen, T. I., Strand, J. P. (1997). A new method of thruster control in positioning of ships based on power control, Proc. 4th IFAC Conf. Manoeuvering and Control of Marine Craft, Brijuni, Croatia.
[18] Teel, A., Panteley, E., Loria, A. (2002). Integral characterization of uniform asymptotic and exponential stability with applications, Maths. Control Signals and Systems. 15:177-201 doi:10.1007/s004980200007
[19] Tjønnås, J., Chaillet, A., Panteley, E., Johansen, T. A. (2006). Cascade lemma for set-stabile systems, 45th IEEE Conference on Decision and Control, San Diego, CA.
[20] Tjønnås, J. Johansen, T. A. (2005). Adaptive optimizing nonlinear control allocation, In Proc. of the 16th IFAC World Congress, Prague, Czech Republic.
[21] Tjønnås, J. Johansen, T. A. (2007). On optimizing nonlinear adaptive control allocation with actuator dynamics, 7th IFAC Symposium on Nonlinear Control Systems, Pretoria, South Africa.
BibTeX:
@article{MIC-2008-2-4,
title={{Optimizing Adaptive Control Allocation With Actuator Dynamics}},
author={Tjønnås, Johannes and Johansen, Tor A.},
journal={Modeling, Identification and Control},
volume={29},
number={2},
pages={69--76},
year={2008},
doi={10.4173/mic.2008.2.4},
publisher={Norwegian Society of Automatic Control}
};