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Abstract

In this work we address the optimizing control allocation problem for an over-actuated nonlinear time-
varying system with actuator dynamic where parameters affine in the actuator and effector model may be
assumed unknown. Instead of optimizing the control allocation at each time instant, a dynamic approach is
considered by constructing actuator reference update-laws that represent an asymptotically optimal alloca-
tion search. By using Lyapunov analysis for cascaded set-stable systems, uniform global/local asymptotic
stability is guaranteed for the optimal equilibrium sets described by the system, the control allocation
update-law and the adaptive update-law, if some persistence of exitation condition holds. Simulations of
a scaled-model ship, manoeuvred at low-speed, demonstrate the performance of the proposed allocation
scheme.∗
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1 Introduction

Consider the high-level system dynamics

ẋ = f(t, x) + g(t, x)τ (1)

the effector model

τ =Φ(t, x, u, θ) (2)
Φ(t,x,u,θ):=Φ0(t,x,u)+Φθ2(t,x,u)θ2+Φθ1(t,x,u)θ1

(3)

and the actuator dynamics

u̇ = fu0(t, x, u, ucmd) + fuθ(t, x, u, ucmd)θ1 (4)

where t ≥ 0, x ∈ Rn, u ∈ Rr, τ ∈ Rd, θ := (θT
1 , θT

2 )T,
θ1 ∈ Rm1 , θ2 ∈ Rm2 , ucmd ∈ Rc. The constant pa-
rameter vectors θ2 and θ1 contains parameters of the
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actuator and effector model, that will be viewed as un-
certain parameters to be adapted. It is assumed that
x and u are measured while τ is unknown, and ucmd is
the input.

This work is motivated by the over-actuated control
allocation problem d ≤ r, where the problem is de-
scribed by a nonlinear system, divided into a dynamic
high-level part (1), a dynamic low-level part (4) and
a static part (2). Consider the static optimal control
allocation problem:

min
ud

J(t, x, ud) s.t. τc − Φ(t, x, ud + ũ, θ̂)=0, (5)

where θ̂ :=
(
θ̂T
1 , θ̂T

2

)T

is the parameter estimates, ũ :=
u − ud and ud is the actuator reference. The main
contribution in this paper is an adaptive allocation al-
gorithm that generates a desired reference ud for the
low-level control based on a high level control law τc,
where (5) not necessarily needs to be solved exactly at
each time instant.

Optimizing control allocation solutions have been
derived for certain classes of over-actuated systems,
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such as aircraft, automotive vehicles and marine ves-
sels, (Enns, 1998; Buffington et al., 1998; Sørdalen,
1997; Bodson, 2002; Härkeg̊ard, 2002; Luo et al., 2004,
2005; Poonamallee et al., 2005; Johansen et al., 2004)
and (Johansen et al., 2005). The control allocation
problem is, in (Enns, 1998; Buffington et al., 1998;
Sørdalen, 1997; Johansen et al., 2005; Bodson, 2002)
and (Härkeg̊ard, 2002), viewed as a static or quasi-
dynamic problem considering non-adaptive linear ef-
fector models of the form τ = Gu, neglecting the effect
of actuator dynamics. In (Luo et al., 2004) and (Luo
et al., 2005) a dynamic model predictive approach is
considered to solve the allocation problem with linear
time-varying dynamics in the actuator model, T u̇+u =
ucmd. In (Poonamallee et al., 2005) and (Johansen
et al., 2004) sequential quadratic programming tech-
niques are used to cope with nonlinearities in the con-
trol allocation problem due to singularity avoidance.
The main advantage of the control allocation approach
is in general the modularity and the ability to han-
dle redundancy and constraints. In the present work
we consider dynamic solutions based on the ideas pre-
sented in (Johansen, 2004) and (Tjønn̊as and Johansen,
2005). In (Johansen, 2004) it was shown that it is not
necessary to solve the optimization problem (5) exactly
at each time instant. Further a control Lyapunov func-
tion was used to derive an exponentially convergent
update-law for u (related to a gradient or Newton-like
optimization) such that the control allocation problem
(5) could be solved dynamically. It was also shown that
convergence and asymptotic optimality of the system,
composed by the dynamic control allocation and a uni-
form globally exponentially stable trajectory-tracking
controller τc, guarantees uniform boundedness and uni-
form global exponential convergence to the optimal
solution of the system. The advantage of this ap-
proach is computational efficiency and simplicity of im-
plementation, since the optimizing control allocation
algorithm is implemented as a dynamic nonlinear con-
troller. Solving (5) online at each sampling instant
requires a computationally more expensive numerical
solution of a nonlinear program in order to guarantee
optimality. In (Tjønn̊as and Johansen, 2005) the re-
sults were extended by allowing uncertain parameters,
associated with an adaptive law, in the effector model,
and by applying set-stability analysis in order to also
conclude asymptotic stability of the optimal solution.
The results in (Tjønn̊as and Johansen, 2005) are ex-
tended in (Tjønn̊as and Johansen, 2007) by considering
actuator dynamic and relaxing some conditions using
the theory in (Tjønn̊as et al., 2006). In the present
paper we extend the result in (Tjønn̊as and Johansen,
2007) by a slightly different parameterization of (2) and
(3).

Whenever referring to the notion of set-stability, the
set has the property of being nonempty, and we strictly
follow the definitions given in (Tjønn̊as et al., 2006)
motivated by (Teel et al., 2002) and (Lin et al., 1996).

2 Adaptive control allocation with
actuator dynamics

The task of the dynamic control allocation algorithm
is to connect the high and low level controls by taking
the desired virtual control τc as an input and com-
puting the desired actuator reference ud as an output.
Based on the minimization problem (5) where J is a
cost function that incorporates objectives such as mini-
mum power consumption and actuator constraints (im-
plemented as barrier functions), the Lagrangian func-
tion

L(t, x,ud,ũ,λ,θ̂):=J(t, x,ud)+(τc−Φ(t, x,ud+ũ,θ̂))Tλ (6)

can be introduced. The idea is then to define update
laws for the actuator reference ud and the Lagrangian
parameter λ, based on a Lyapunov approach, such that
ud and λ converges to a set defined by the first order
optimal condition for L.

Since the parameter vector θ from the effector and
actuator models are unknown, an adaptive update law
for θ̂ is defined. The parameter estimates are used
in the Lagrangian function (6) and a certainty equiva-
lent adaptive optimal control allocation can be defined.
The following observers are used in order to produce
estimates of the parameters:

˙̂u =Aû(u− û) + fu0(t, x, u, ucmd) + fuθ(t, x, u, ucmd)θ1

˙̂x =Ax̂(x− x̂) + f(t, x) + g(t, x)Φ(t, x, u, θ̂).

where (−Aû) and (−Ax̂) are Hurwitz matrices.
In the following, if stating that a function F is uni-

formly bounded by y, this means that there exist a
function GF : R≥0 → R≥0 such that |F (t, y, z)| <
Gf (|y|) for all y, z and t.

Assumpiton 1 (Plant)

a) The states from (1) and (4) are known for all t.

b) The function f is uniformly locally Lipschitz in x
and uniformly bounded by x. The function g is
uniformly bounded and it’s partial derivatives are
bounded by x.

c) The function Φ is twice differentiable and uniformly
bounded by x and u. Moreover it’s partial deriva-
tives are uniformly bounded by x.
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d) There exists constants %2 > %1 > 0, such that ∀t, x,
u and θ

%1I≤ ∂Φ
∂u

(t, x, u, θ)
(

∂Φ
∂u

(t, x, u, θ)
)T

≤%2I. (7)

Assumpiton 2 (High and Low level Controller Algo-
rithms)

a) There exists a high level control τc := k(t, x), that
render the equilibrium of (1) UGAS for τ = τc.
The function k is uniformly bounded by x and dif-
ferentiable. It’s partial derivatives are uniformly
bounded by x.

b) There exists a low-level control
ucmd := ku(t, x, u, ud, u̇d, θ̂1) that makes the equi-
librium of

˙̃u = fũ(t, x, ũ, ud, θ̂1, θ1) (8)

UGAS if θ̂1 = θ1 and x, ud, u̇d exist for all t > 0,
where

fũ(t, x, ũ, ud, θ̂1, θ1) :=

+ fu0(t, x, u, ku(t, x, u, ud, u̇d(t), θ̂1))

+ fuθ(t, x, u, ku(t, x, u, ud, u̇d(t), θ̂1))θ1

− ku(t, x, u, ud, u̇d(t), θ̂1).

Remark 1 From assumption 2a) there exist a Lya-
punov function Vx : R≥0 × Rn 7→ R≥0 and K∞ func-
tions αx1, αx2, αx3 and αx4 such that

αx1(|x|) ≤ Vx(t, x) ≤ αx2(|x|) (9)
∂Vx

∂t
+

∂Vx

∂x
(f(t, x) + g(t, x)k(t, x)) ≤−αx3(|x|) (10)

∣∣∣∣
∂Vx

∂x

∣∣∣∣ ≤ αx4(|x|). (11)

We will not discuss the details in these assumptions,
but they are sufficient in order to guarantee existence of
solutions and validity of the update-laws that we pro-
pose in this paper, see (Tjønn̊as and Johansen, 2005).
The main problem formulation is given by:

Problem: Define update-laws (14)-(16) for ud, λ

and θ̂, such that the stability of the closed loop:

ẋ = f(t, x) + g(t, x)k(t, x)
+ g(t, x) (Φ(t, x, u, θ)− k(t, x)) (12)

˙̃u = fũ(t, x, ũ, ud, θ̂1, θ1) (13)

u̇d := fd(t, x, ũ, ud, θ̂) (14)

λ̇ := fλ(t, x, ũ, ud, θ̂) (15)
˙̃
θ := −fθ̂(t, x, ũ, ud, θ̂) (16)

η̇u = −Aûηu + f̄uθ(t, x, ud, ũ, θ̂)θ̃1 (17)

η̇x = −Ax̂ηx + Φθ2(t, x, u)θ̃2 + Φθ1(t, x, u)θ̃1 (18)

where f̄uθ(t, x, ud, ũ, θ̂) := fuθ(t, x, u, ku(t, x, u, ud,

fd(t, x, ũ, ud, θ̂), θ̂1)), θ̃ = θ−θ̂, ηu := u−û, ηx := x−x̂,
is conserved and ud(t) converges to an optimal solution
with respect to the minimization problem (5).

Figure 1: The closed loop diagram of the certainty
equivalent control allocation algorithm

Let (12) define the sub-system Σ1 and (13)-(18) de-
fine the sub-system Σ2, then Σ1 and Σ2 form a cascade
as long as x(t) exists for all t > 0, and is viewed as a
time-varying input to Σ2. For the system Σ2 we will
consider stability with respect to the set

Oudλθ̃(t, x):=
{

zudλθ̃∈Rnudλθ̃

∣∣∣fOuλθ̃
(t, x, zudλθ̃)=0

}

(19)
where nudλθ̃ := 3r + d + n + m,

zudλθ̃ :=
(
uT

d , λT, ũT, ηT
u , ηT

x , θ̃T
)T

and fOuλθ̃
(t, x, zudλθ̃) :=((

∂L
∂u

)T
,
(

∂L
∂λ

)T
, ũT, ηT

u , ηT
x , θ̃T

)
. In order to relate the

notion of optimal control allocation to the setOudλθ̃(t, x),
we introduce the sufficient conditions for the set

Oudλ(t, x, ũ, θ̂) :=



(
uT

d , λT
)T ∈ Rr+d

∣∣∣∣∣∣

((
∂L

∂ud

)T

,

(
∂L

∂λ

)T
)T

= 0





to be the optimal solution of problem (5), by the fol-
lowing assumption.

Assumpiton 3 (Optimal Control Allocation)

a) The cost function J : R≥t0 × Rn×r → R is twice
differentiable and J(t, x, ud) → ∞ as |ud| → ∞.
Furthermore ∂J

∂ud
, ∂2J

∂t∂ud
and ∂2J

∂x∂ud
are uniformly

bounded by x and ud.

b) There exists constants k2 > k1 > 0, such that ∀ t,

x, θ̂, ũ and
(
uT

d , λT
)T

/∈ Oudλ(t, x, ũ, θ̂)

k1I ≤ ∂2L

∂u2
d

(t, x, ud, ũ, λ, θ̂) ≤ k2I. (20)
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If
(
uT

d , λT
)T ∈ Oudλ(t, x, ũ, θ̂) the lower bound is

replaced by ∂2L
∂u2

d
≥ 0

Lemma 1 By Assumption 1 there exists continuous
functions ςx, ςxu, ςu : R≥0 → R≥0, such that

|Φθ1(t, x, ũ + ud)|+ |Φθ2(t, x, ũ + ud)|

≤ ςx(|x|)ςxx(|x|)ςxu(|ũ|) + ςx(|x|)ςu
(∣∣∣zudλθ̃

∣∣∣
Oudλũθ̃

)
.

Assumpiton 2 (continued)

c) There exists a K∞ function αk : R≥0 → R≥0, such
that

α−1
k (|x|)αx3(|x|) ≥ αx4(|x|)ς̄x(|x|) , (21)

where ς̄x(|x|) := max(1, ςx(|x|), ςx(|x|)ςxx(|x|)).

We approach the problem formulation by i) defin-
ing a Lyapunov like function, Vudλũηθ̃, for the system
Σ2 and defining explicit update-laws for ud, λ and θ̃
such that V̇udλũηθ̃ ≤ 0. ii) Furthermore, boundedness
of the closed-loop system, Σ1 and Σ2 can be proved,
and the cascade lemma from (Tjønn̊as et al., 2006) can
be applied to prove convergence and stability.

Consider the Lyapunov function candidate

Vudλũηθ̃(t,x, ud, λ, ũ, η):=Vũ(t, ũ)+
1
2
ηT

u Γηηu+
1
2
ηT

x Γx̃ηx

+
1
2

(
∂LT

∂ud

∂L

∂ud
+

∂LT

∂λ

∂L

∂λ

)
+

1
2
θ̃T
1 Γθ1 θ̃1+

1
2
θ̃T
2 Γθ2 θ̃2 (22)

and the algorithm:

(
u̇d

λ̇

)
= −ΓH

(
∂Lθ̂

∂ud
∂Lθ̂

∂λ

)
− uff (23)

˙̂
θT
1 =

(
∂Vũ

∂ũ
+ ηT

u Γη

)
fuθ(t, x, ud + ũ, ucmd)Γ−1

θ1

+
(
x̃TΓx̃+

∂LT

∂ud

∂2L

∂ũ∂ud
+

∂LT

∂λ

∂2L

∂ũ∂λ

)
fuθ(t, x, u, ucmd)Γ−1

θ1

+
(
∂LT

∂ud

∂2L

∂x∂ud
+

∂LT

∂λ

∂2L

∂x∂λ

)
g(t, x)Φθ1(t, x, ud+ũ)Γ−1

θ1

(24)

˙̂
θT
2 = ηT

x Γx̃g(t, x)Φθ2(t, x, u)Γ−1
θ2

+
(
∂LT

∂ud

∂2L

∂x∂ud
+

∂LT

∂λ

∂2L

∂x∂λ

)
g(t, x)Φθ2(t, x, u)Γ−1

θ2

(25)

where H : =

(
∂2L
∂u2

d

∂2L
∂λ∂ud

∂2L
∂ud∂λ 0

)
, Γ is a possibly time-

varying symmetric positive definite weighting matrix
and uff is a feed-forward like term:

uff := H−1

(
∂2L

∂t∂ud
∂2L
∂t∂λ

)
+H−1

(
∂2L

∂x∂ud
∂2L
∂x∂λ

)
f(t, x)

+H−1

(
∂2L

∂x∂ud
∂2L
∂x∂λ

)
g(t, x)(k(t, x)− Φ(t, x, ud + ũ, θ̂))

+H−1

(
∂2L

∂ũ∂ud
∂2L

∂ũ∂λ

)
fũ(t, x, ũ, ud, ucmd, θ̂)+H−1

(
∂2L

∂θ̂∂ud
∂2L
∂θ̂∂λ

)
˙̂
θ,

if det(H) 6= 0 and uff := 0 if det(H) = 0, then the
time derivative of Vudλũηθ̃ along the trajectories of Σ1

and Σ2 is given by:

V̇udλũηθ̃ = −ηTΓηAη − αũ3(|ũ|)− x̃TΓx̃Ax̃x̃

−
(

∂L

∂ud

T

,
∂L

∂λ

T
)
HΓH

(
∂L

∂ud

T

,
∂L

∂λ

T
)T

. (26)

Proposition 1 If the assumptions 1, 2 and 3 are sat-
isfied, then the solution of the closed-loop (12)-(18) is
bounded with respect to a set Oxudλθ̃(t) := Oudλθ̃(t, 0)×
{x ∈ R≥t0 |x = 0}. Furthermore the set Oxudλθ̃ is UGS
with respect to the system defined by (12)-(18). If in
addition fp(t) := fuθ(t, x(t), u(t), ucmd(t)) and Φg(t) :=
g(t, x(t))Φθ2(t, x(t), u(t)) are Persistently Exited (PE),
i.e. there exist constants T and γ > 0, such that

∫ t+T

t
F (τ)TF (τ)dτ ≥ γI , ∀t > t0,

is satisfied for F (τ) = fp(t) and F (τ) = Φg(t), then the
set Oxudλθ̃ is UGAS with respect to the system (12)-
(18).

The proof of Proposition 1 involves similar steps as in
the proof of the main result in (Tjønn̊as and Johansen,
2007) and is therefore omitted here.

Proposition 1 implies that the time-varying first or-
der optimal set Oxuλθ̃(t) is uniformly stable, and in
addition uniformly attractive if a PE assumption is
satisfied. Thus adaptive optimal control allocation is
achieved asymptotically for the closed loop under the
PE condition.

Corollary 1 If for U ⊂ Rr there exist constant cx > 0
such that for |x| ≤ cx the domain Uz ⊂ Rn × U ×
R2r+d+n+m contain Oxudλθ̃, then if the Assumptions 1-
3 are satisfied, the set Oxudλθ̃ is US with respect to the
system (12)-(18). If in addition fp(t) and Φg(t) are
PE, Oxuλθ̃ is UAS with respect to the system (12)-(18).
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3 Example

In this section, simulation results of an over-actuated
scaled-model ship, manoeuvred at low-speed, is pre-
sented. The scale model-ship is moved while experienc-
ing disturbances caused by wind and current, and pro-
pellers trust losses. The propeller losses can be due to:
Axial Water Inflow, Cross Coupling Drag, Thruster-
Hull and Thruster-Thruster Interaction (see (Sørensen
et al., 1997) and (Fossen and Blanke, 2000) for details).
But in this example we limit our study to thruster loss
caused by Thruster-Hull interaction. A 3DOF horizon-
tal plane model described by:

η̇e = R(ψp)ν

ν̇ = −M−1Dν + M−1τ (27)
τ = Φ(ν, u, θ),

is considered, where ηe := (xe, ye, ψe)
T := (xp−xd, yp−

yd, ψp −ψd)T is the north and east positions and com-
pass heading deviations. Subscript p and d denotes
the actual and desired states. ν := (υx, υy, r)T is the
body-fixed velocities, surge, sway and yaw, τ is the gen-
eralized force vector and R(ψp) is the rotation matrix
function between the body fixed and the earth fixed co-
ordinate frame. The example we present here is based
on (Lindegaard and Fossen, 2003), and is also stud-
ied in (Johansen, 2004), (Tjønn̊as and Johansen, 2005)
and (Tjønn̊as and Johansen, 2007). In the considered
model there are five force producing devices; the two
main propellers aft of the hull, in conjunction with two
rudders, and one tunnel thruster going through the hull
of the vessel. ωi denotes the propeller angular veloc-
ity and δi denotes the rudder deflection. i = 1, 2 de-
notes the aft actuators, while i = 3 denotes the tunnel
thruster. Equation (27) can be rewritten in the form
of (1) and (2) by:

x := (ηe, ν)T , θ1 := (θ11, θ12, θ13)
T

, θ2 := (θ21, θ22, θ23)
T

τ :=(τ1, τ2, τ3)
T

, u:=(ω1, ω2, ω3, δ1, δ2)
T

,

f :=
(

R(ψe + ψd)ν
−M−1Dν

)
, g :=

(
0

M−1

)
,

Φ(ν, u, θ) := Gu(u)




T1(υx, ω1, θ11)
T2(υx, ω2, θ12)

T3(υx, υy, ω3, θ13)


 + R(ψp)θ2

Gu(u) :=




(1−D1) (1−D2) 0
L1 L2 1
Φ31 Φ32 l3,x




Φ31(u) := −l1,y(1−D1(u) + l1,xL1(u)),
Φ32(u) := −l2,y (1−D2(u) + l2,xL2(u)) .

The thruster forces are given by:

Ti(υx, ωi, θ1i) :=Tni(ωi)− φi(ωi, υx)θ1i (28)

Tni(ωi) :=
{

kTpi
ω2

i ωi ≥ 0
kTni

|ωi|ωi ωi < 0 ,

φ1(ω1, υx) :=ω1υx, φ2(ω2, υx) := ω2υx

φ3(ω3) :=
√

υ2
x + υ2

y) |ω3|ω3, θ13 := kTθ3

θ11 :=
{

kTθ1(1− w) υx ≥ 0
kTθ1 υx < 0 ,

θ12 :=
{

kTθ2(1− w) υx ≥ 0
kTθ2 υx < 0 ,

where 0 < w < 1 is the wake fraction number, φi(ωi, υx)θ1i

is the thrust loss due to changes in the advance speed,
υa = (1− w)υx, and the unknown parameters θ1i rep-
resents the thruster loss factors dependent on whether
the hull invokes on the inflow of the propeller or not.
The rudder lift and drag forces are projected through:

Li(u):=
{

(1+kLniωi)(kLδ1i+kLδ2i |δi|)δi , ωi ≥ 0
0 , ωi < 0 ,

Di(u):=
{

(1+kDniωi)(kDδ1i |δi|+kDδ2iδ
2
i ) , ωi ≥ 0

0 , ωi < 0 .

Further more it is clear from (28) that Φ(ν, u, θ) =
Gu(u)Q(u)+Gu(u)φ(ω, υx)θ1+R(ψe)θ2, where φ(ω, υx) :=
diag(φ1, φ2, φ3), Q(u) represents the nominal propeller
thrust and θ2 represents unknown external disturbances,
such as ocean current, that are constant in the earth
fixed coordinate frame.

The actuator error dynamic for each propeller is based
on the propeller model presented in (Pivano et al.,
2007) and given by

Jmi
˙̃ωi = −kfi (ω̃i + ωdi)− Tni

aT
(ω̃i + ωdi)

+
φi(ωi, υx)θ1i

aT
+ ucmdi − Jmiω̇di (29)

where ω̃i := (ωi − ωid), Jm is the shaft moment of
inertia, kf is a positive coefficient related to the viscous
friction, aT is a positive model constant (Pivano et al.,
2006) and ucmd is the commanded motor torque. By
the quadratic Lyapunov function ω̃2

i

2 it is easy to see
that the control law

ucmdi :=−Kωp(ω̃i)− φi(ωi, υx)θ̂1i

aT
+ Jmiω̇di

+
Tni(ωdi)

aT
+ kfiωdi. (30)

makes the origin of (29) UGES when θ̂1i = θ1i. The
rudder model is linearly time-variant and the error dy-
namic is given by:

mi
˙̃
δ = ai(t)

(
δ̃ + δdi

)
+ biucmdδi −miδ̇di (31)
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where δ̃ := δi−δdi, ai, bi are a known scalar parameter
bounded away from zero, and the controller

biucmdδi := −Kδ δ̃ − ai(t)
(
δ̃ + δdi

)
+ miδ̇di (32)

makes the origin of (31) UGES. The parameters for
the actuator model and controllers are: aT = 1, Jmi =
10−2, kfi = 10−4, ai = −10−4, bi = 10−5, mi = 10−2,
Kωp = 5 · 10−3 and Kδ = 10−3

A virtual controller τc that stabilizes the system (27)
uniformly, globally and exponentially, for some physi-
cally limited yaw rate, is proposed in (Lindegaard and
Fossen, 2003) and given by

τc := −KiR
T (ψp)ξ −KpR

T (ψp)ηe −Kdν, (33)

where (27) is augmented with the integral action de-
scribed by, ξ̇ = ηe. Thus Assumption 2 concerning
high- and low- level control is satisfied. The cost func-
tion designed for the optimization problem, (5), is:

J(u):=
3∑

i=1

ki |ωi|ω2
i + ki2ω

2
i +

2∑

i=1

qiδ
2
i−ς

3∑

i=1

lg(−ωi + 18)

−ς

3∑

i=1

lg(ωi+18)−ς

2∑

i=1

lg(−δi+35)−ς

2∑

i=1

lg(δi+35),

ς = 0.05, k1 = k2 = 0.01, k3 = 0.02, ki2 = 10−3,

q1 = q2 = 2500.

By investigating the given specifications of the system
we can see that the Assumption 3 is also satisfied lo-
cally, since u is bounded. The gain matrices are chosen
as follows: Kp := M · diag(3.13, 3.13, 12.5)10−2, Kd :=
M ·diag(3.75, 3.75, 7.5)10−1, KI := M ·diag(0.2, 0.2, 4)10−3,
Ax̂ := 10, Γx̃ := I9×9, Γ−1

θ2
:= 10−4diag (1, 1, 10), Aû :=

2I5×5, Γθ1 := 10−3, Γη := diag(103, 103, 3) and Γ :=(
HT

θ̂
WHθ̂ + εI

)−1

where

W := diag (1, 1, 1, 1, 1, 0.9, 0.9, 0.7) and ε := 10−9.

The thruster loss vector θ1 and θ̂1 are given in Figure
6, θ2 := (0.05, 0.08, 0.02) and θ̂2 are given in Figure 7.

The simulation results are presented in the Figures
2-8. The control objective is satisfied and the com-
manded virtual controls are tracked by the forces gen-
erated by the adaptive control allocation law: see Fig-
ure 5. Note that there are some deviations since ω
saturates from 0 − 230s and since the loss parameter
has changed at ca. 420s. Also note that the parame-
ter estimates θ̂1 only converge to the true values when
the ship is moving and the thrust loss is not zero. The
simulations are carried out in a discrete MATLAB en-
vironment with a sampling rate of 20Hz
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Figure 2: Desired (dashed) and actual ship positions
(solid).
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Figure 3: Actual propeller velocities
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Figure 4: Actual rudder deflection
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Figure 5: The virtual control (dashed) and actual
(solid) forces generated by the actuators
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Figure 6: Actual (dashed) and estimated (solid) loss
parameters

0

0.02

0.04

0.06

θ 21
 

0

0.02

0.04

0.06

0.08

0.1

θ 22
 

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

θ 23
 

t [s]

Figure 7: Effector model parameter estimates

73



Modeling, Identification and Control

−0.2

−0.1

0

0.1

0.2

lo
ss

1 [N
]

−0.3

−0.2

−0.1

0

0.1

0.2

lo
ss

2 [N
]

0 100 200 300 400 500 600
−5

0

5

10

15

20
x 10

−3

lo
ss

3 [N
m

]

t [s]

Figure 8: Actual thrust loss

References

Bodson, M. Evaluation of optimization methods for
control allocation. J. Guidance, Control and Dy-
namics, 2002. 25:703–711.

Buffington, J. M., Enns, D. F., and Teel, A. R. Control
allocation and zero dynamics. J. Guidance, Control
and Dynamics, 1998. 21:458–464.

Enns, D. Control allocation approaches. In Proc. AIAA
Guidance, Navigation and Control Conference and
Exhibit, Boston MA. 1998 pages 98–108.

Fossen, T. I. and Blanke, M. Nonlinear output feed-
back control of underwater vehicle propellers using
feedback form estimated axial flow velocity. IEEE
Journal of Oceanic Engineering, 2000. 25(2):241–
255.

Härkeg̊ard, O. Efficient active set algorithms for solv-
ing constrained least squares problems in aircraft
control allocation. In Proc. IEEE Conf. Decision
and Control, Las Vegas NV. 2002 .

Johansen, T. A. Optimizing nonlinear control alloca-
tion. Proc. IEEE Conf. Decision and Control. Ba-
hamas, 2004. pages 3435–3440.

Johansen, T. A., Fossen, T. I., and Berge, S. P. Con-
strained nonlinear control allocation with singular-
ity avoidance using sequential quadratic program-
ming. IEEE Trans. Control Systems Technology,
2004. 12:211–216.

Johansen, T. A., Fossen, T. I., and Tøndel, P. Efficient
optimal constrained control allocation via multipara-

metric programming. AIAA J. Guidance, Control
and Dynamics, 2005. 28:506–515.

Lin, Y., Sontag, E. D., and Wang, Y. A smooth con-
verse lyapunov theorem for robust stability. SIAM
Journal on Control and Optimization, 1996. 34:124–
160.

Lindegaard, K. P. and Fossen, T. I. Fuel-efficient rud-
der and propeller control allocation for marine craft:
Experiments with a model ship. IEEE Trans. Con-
trol Systems Technology, 2003. 11:850–862.

Luo, Y., Serrani, A., Yurkovich, S., Doman, D., and
Oppenheimer, M. Model predictive dynamic control
allocation with actuator dynamics. In Proceedings
of the 2004 American Control Conference, Boston,
MA, 2004.

Luo, Y., Serrani, A., Yurkovich, S., Doman, D., and
Oppenheimer, M. Dynamic control allocation with
asymptotic tracking of time-varying control trajec-
tories. In Proceedings of the 2005 American Control
Conference, Portland, OR, 2005.

Pivano, L., Johansen, T. A., Smogeli, Ø. N., and Fos-
sen, T. I. Nonlinear Thrust Controller for Marine
Propellers in Four-Quadrant Operations. American
Control Conference (ACC), New York, USA, 2007.

Pivano, L., Smogeli, Ø. N., Johansen, T. A., and Fos-
sen, T. I. Marine propeller thrust estimation in four-
quadrant operations. 45th IEEE Conference on De-
cision and Control, San Diego, CA, USA, 2006.

Poonamallee, V., Yurkovich, S., Serrani, A., Doman,
D., and Oppenheimer, M. Dynamic control alloca-
tion with asymptotic tracking of time-varying con-
trol trajectories. In Proceedings of the 2004 Ameri-
can Control Conference, Boston, MA, 2005.

Sørdalen, O. J. Optimal thrust allocation for marine
vessels. Control Engineering Practice, 1997. 5:1223–
1231.
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