“Kinematic Models for Manoeuvring and Seakeeping of Marine Vessels”

Authors: Tristan Perez and Thor I. Fossen,
Affiliation: University of Newcastle (Australia) and NTNU, Centre for Ships and Ocean Structures
Reference: 2007, Vol 28, No 1, pp. 19-30.

Keywords: Kinematics, ship motion, seakeeping, manoeuvring

Abstract: The motion of marine vessels has traditionally been studied using two different approaches: manoeuvring and seakeeping. These two approaches use different reference frames and coordinate systems to describe the motion. This paper derives the kinematic models that characterize the transformation of motion variables (position, velocity, accelerations) and forces between the different coordinate systems used in these theories. The derivations hereby presented are done in terms of the formalism adopted in robotics. The advantage of this formulation is the use of matrix notation and operations. As an application, the transformation of linear equations of motion used in seakeeping into body-fixed coordinates is considered for both zero and forward speed.

PDF PDF (208 Kb)        DOI: 10.4173/mic.2007.1.3

DOI forward links to this article:
[1] Gullik A. Jensen, Niklas Säfström, Tu Duc Nguyen and Thor I. Fossen (2010), doi:10.1016/j.oceaneng.2009.12.009
[2] (2011), doi:10.1002/9781119994138.refs
[3] James H. VanZwieten and Frederick R. Driscoll (2008), doi:10.1080/13873950802164718
[4] Keum-Shik Hong and Quang Hieu Ngo (2012), doi:10.1016/j.oceaneng.2012.06.013
[5] M Figari, G Vigna and S Vignolo (2011), doi:10.1177/1475090210396012
[6] Elena Celledoni, Håkon Marthinsen and Brynjulf Owren (2014), doi:10.1016/j.jcp.2012.12.031
[7] Xuetao Chen and Woei Wan Tan (2013), doi:10.1016/j.oceaneng.2013.05.021
[8] Zhongli Wang, Yunhui Liu, Hoi Wut Yip, Biao Peng, Shuyuan Qiao and Shi He (2008), doi:10.1109/AIM.2008.4601857
[9] Thor Fossen and Tristan Perez (2009), doi:10.1109/MCS.2009.934408
[10] Daniel Leite, Fernando Gomide, Rosangela Ballini and Pyramo Costa (2011), doi:10.1109/FUZZY.2011.6007452
[11] Yusuke Kobashi, Genma Sano, Tsuyoshi Nakamura and Masayoshi Kanoh (2011), doi:10.1109/FUZZY.2011.6007480
[12] Xue Tao Chen and Woei Wan Tan (2012), doi:10.1109/FUZZ-IEEE.2012.6251244
[13] Xue Tao Chen and Woei Wan Tan (2012), doi:10.1109/FUZZ-IEEE.2012.6251243
[14] Sun Qiaomei, Ren Guang, Yue Jin and Qi Xiaowei (2011), doi:10.1109/ICMTMA.2011.155
[15] E. Simetti and G. Casalino (2015), doi:10.1016/j.arcontrol.2015.09.011
[16] Ji Hyoung Ryu, Ganduulga Gankhuyag and Kil To Chong (2016), doi:10.1155/2016/7942963
[17] A. Mironenko (2013), doi:10.3182/20130918-4-JP-3022.00008
[18] Enrico Simetti, Stefano Galeano and Giuseppe Casalino (2016), doi:10.1109/OCEANSAP.2016.7485690
[19] V.L. Timchenko and O.A. Ukhin (2016), doi:10.1109/MSNMC.2016.7783129
[20] Chenguang Liu, Huarong Zheng, Rudy R. Negenborn, Xiumin Chu and Le Wang (2015), doi:10.1007/978-3-319-24264-4_12
[21] Giuseppe Casalino, Enrico Simetti and Francesco Wanderlingh (2017), doi:10.1007/978-3-319-55372-6_17
[22] Enrico Simetti and Giuseppe Casalino (2017), doi:10.1109/JOE.2016.2618182
[23] Enrico Simetti, Francesco Wanderlingh, Giuseppe Casalino, Giovanni Indiveri and Gianluca Antonelli (2017), doi:10.1109/OCEANSE.2017.8084888
[24] Xiaogong Lin, Yuzhao Jiao and Dawei Zhao (2018), doi:10.1109/ACCESS.2018.2789336
[25] Liu Hengzhi, Geng Tao, Zhang Wei, X. Lei, S.P. Kozaitis and C.-C. Ku (2018), doi:10.1051/matecconf/201816005007
[26] Geir Ole Tysse and Olav Egeland (2018), doi:10.4173/mic.2018.2.1
[27] Elena Celledoni, Eirik Hoel Høiseth and Nataliya Ramzina (2018), doi:10.1007/s11044-018-9628-5
[28] E. Simetti, G. Casalino, F. Wanderlingh and M. Aicardi (2018), doi:10.1016/j.oceaneng.2018.06.026
[29] De Yi Sang, Jian Jun Zhao and Yi Wang (2014), doi:10.4028/www.scientific.net/AMM.631-632.779
[30] Laura J. Nixon, Amy Tabb, William R. Morrison, Kevin B. Rice, Eckehard G. Brockerhoff, Tracy C. Leskey, Chikako van Koten, Stephen Goldson and Michael Rostás (2019), doi:10.1007/s10340-019-01084-x
[31] Andrej Cibicik, Geir O. Tysse and Olav Egeland (2019), doi:10.1115/1.4043701
[32] Daniele Di Vito, Daniela De Palma, Enrico Simetti, Giovanni Indiveri and Gianluca Antonelli (2020), doi:10.1002/rob.21982
[33] Mutaz Ryalat, Hazem Salim Damiri and Hisham ElMoaqet (2020), doi:10.3390/app10207314
[34] Javier Fernandez de Canete and Jesus Martin-Aguilar (2020), doi:10.1177/0037549720974751
References:
[1] Bailey, P., Price, W., Temarel, P. (1997). A unified mathematical model describing the manoeuvring of a ship in seaway, Transactions The Royal Institution of Naval Architects - RINA, 140:131-149.
[2] Bishop, R. Price, W. (1981). On the use of equilibrium axes and body axes in the dynamics of a rigid ship, Journal of Mechanical Engieering Scinece, 2.5:243 - 256 doi:10.1243/JMES_JOUR_1981_023_045_02
[3] Cummins, W. (1962). The impulse response function and ship motion, Technical Report 1661, David Taylor Model Basin - DTNSRDC.
[4] Egeland, O. Gravdahl, J. (2002). Modeling and Simulation for Automatic Control, Marine Cybernetics, Trondheim.
[5] Faltinsen, O. (2005). Hydrodynamic of High-speed Marine Vehicles, Cambridge University Press, 2005. Fathi, D. ShipX Vessel Responses.VERES. Marintek AS Trondheim, http://www.marintek.sintef.no.
[6] Fossen, T. (2002). Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trondheim.
[7] Fossen, T. (2005). A nonlinear unified state-space model for ship maneuvreing and control in a seaway, In International Journal of Bifurcation and Chaos, volume 15. pp. 2717 - 2746 doi:10.1142/S0218127405013691
[8] Fossen, T. Smogeli, Ø. (2004). Nonlinear time-domain strip theory formulation for low speed manoeuvring and station-keeping, Modelling Identification and Control - MIC. 2.4.
[9] Graham, R. (1990). Motion-induced interruptions as ship operability criteria, Naval Engineers Journal. 10.3.
[10] Journée, J. Adegeest, L. (2003). Theoretical Manual of Strip Theory Program SEAWAY for Windows, TU Delft, Delft University of Technology, www.ocp.tudelft.nl/mt/journee.
[11] Kane, T. Levinson, D. (1985). Dynamics: Theory and Applications, McGraw-Hill series in Mechanical Engineering. McGraw-Hill.
[12] Lloyd, A. (1989). Seakeeping: Ship Behaviour in Rough Weather, Ellis Horwood Series in Marine Technology. Ellis Horwood.
[13] Ogilvie, T. (1964). Recent progress towards the understanding and prediction of ship motions, In 6th Symposium on Naval Hydrodynamics.
[14] Perez, T. (2005). Ship Motion Control: Course Keeping and Roll Reduction using rudder and fins, Advances in Industrial Control. Springer-Verlag, London.
[15] Perez, T. Fossen, T. (2006). Time-domain models of marine surface vessels for simulation and control design based on seakeeping computations, In Proc. 7th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC. Lisbon, Portugal.
[16] Rao, A. (2006). Dynamics of Particles and Rigid Bodies A Systematic Approach, Cambridge University Press.
[17] Sciavicco, L. Siciliano, B. (2004). Modelling and Control of Robot Manipulators, Advanced Textbooks in control and Signal Processing. Springer-Verlag London.5th printing.
[18] Smogeli, Ø., Perez, T., Fossen, T., Sørensen, A. (2005). The marine systems simulator state-spacemodel representation for dynamically positioned surface vessels, In International Maritime Association of the Mediterranean IMAM Conference, Lisbon, Portugal.
[19] SNAME. (1950). Nomenclature for treating the motion of a submerged body through a fluid, Technical Report Bulletin 1-5, Society of Naval Architects and Marine Engineers, New York, USA.
[20] WAMIT. (2004). WAMIT User Manual, www.wamit.com.


BibTeX:
@article{MIC-2007-1-3,
  title={{Kinematic Models for Manoeuvring and Seakeeping of Marine Vessels}},
  author={Perez, Tristan and Fossen, Thor I.},
  journal={Modeling, Identification and Control},
  volume={28},
  number={1},
  pages={19--30},
  year={2007},
  doi={10.4173/mic.2007.1.3},
  publisher={Norwegian Society of Automatic Control}
};