“Optimizing nonlinear adaptive control allocation”

Authors: Johannes Tjønnås and Tor A. Johansen,
Affiliation: NTNU, Department of Engineering Cybernetics and SINTEF
Reference: 2006, Vol 27, No 1, pp. 43-56.

Keywords: Nonlinear systems, adaptive control, control allocation

Abstract: A control-Lyapunov approach is used to develop an adaptive optimizing control allocation algorithm for over-actuated mechanical systems where the actuator model is affine in the uncertain parameters. Uniform global (asymptotic) stability is guaranteed by the control allocation defined by the dynamic update laws in combination with an exponentially stable controller.

PDF PDF (709 Kb)        DOI: 10.4173/mic.2006.1.3

DOI forward links to this article:
[1] Johannes Tjonnas and Tor Arne Johansen (2007), doi:10.1109/CDC.2007.4434782
[2] Andrea Serrani, Alicia M. Zinnecker, Lisa Fiorentini, Michael A. Bolender and David B. Doman (2009), doi:10.1109/ACC.2009.5160694
[3] Johannes Tjonnaas and Tor Arne Johansen (2006), doi:10.1109/MED.2006.328748
[4] Johannes Tjonnas, Antoine Chaillet, Elena Pantele and Tor Arne Johansen (2006), doi:10.1109/CDC.2006.376841
[5] Jiachen Dong, Jianqiu Li, Qinhe Gao, Jiayi Hu and Zhihao Liu (2023), doi:10.1016/j.conengprac.2023.105486
[1] BERTSEKAS, D.P., NEDIC, A. OZDAGLAR, A.E. (2003). Convex Analysis and Optimization, Athena Scientific.
[2] BODSON, M. (2002). Evaluation of optimization methods for control allocation, J. Guidance, Control and Dynamics 25, pp. 703-711 doi:10.2514/2.4937
[3] BUFFINGTON, J.M., ENNS, D.F. TEEL, A.R. (1998). Control allocation and zero dynamics, J. Guidance, Control and Dynamics 21, pp. 458-464 doi:10.2514/2.4258
[4] ENNS. D. (1998). Control allocation approaches, In: Proc. AIAA Guidance, Navigation and Control Conference and Exhibit, Boston MA, pp. 98-108.
[5] HÄRKEGÅRD, O. (2002). Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation, In Proc. IEEE Conf. Decision and Control, Las Vegas NV.
[6] JOHANSEN, T.A. (2004). Optimizing nonlinear control allocation, Proc. IEEE Conf. Decision and Control. Bahamas pp. 3435-3440.
[7] JOHANSEN. T.A., FOSSEN, T.I. BERGE. S.P. (2004). Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming, IEEE Trans. Control Systems Technology 12, pp. 211-216 doi:10.1109/TCST.2003.821952
[8] KRST1C, M.. KANELLAKOPOULOS, I. KOKOTOVIC, P. (1995). Nonlinear and Adaptive Control Design, John Wiley and Sons. Inc.
[9] LINDEGAARD, K.P FOSSEN. T.I. (2003). Fuel-efficient rudder and propeller control allocation for marine craft: Experiments with a model ship, IEEE Trans. Control Systems Technology 11, pp. 850-862 doi:10.1109/TCST.2003.815613
[10] SKJETNE, R. (2005). The Maneuvering Problem, Phd thesis. NTNU. Trondheim, Norway.
[11] SØRDALEN. O.J. (1997). Optimal thrust allocation for marine vessels, Control Engineering Practice 5. pp. 1223-1231 doi:10.1016/S0967-0661(97)84361-4
[12] TEEL A., PANTELEY, E. LORIA, A. (2002). Integral characterization of uniform asymptotic and exponential stability with applications, Maths. Control Signals and Systems 15. pp. 177-201 doi:10.1007/s004980200007

  title={{Optimizing nonlinear adaptive control allocation}},
  author={Tjønnås, Johannes and Johansen, Tor A.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}