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Optimizing nonlinear adaptive control allocation{

JOHANNES TJ@NNAS*f and TOR A. JOHANSEN*t#
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A control-Lyapunov approach is used to develop an adaptive optimizing control
allocation algorithm for over-actuated mechanical systems where the actuator model
is affine in the uncertain parameters. Uniform global (asymptotic) stability is
guaranteed by the control allocation defined by the dynamic update laws in combi-
nation with an exponentially stable controller.

1. Introduction
Consider the system
x=f(t, x, )=fi(t, x) +g(t, )T (1)
t=h{t, x,u, D=0, x, )0 2)

where t1=0, xeR", uel, 1€ RY (e R™ and m=<d=r. The constant parameter
vector 0 contains parameters of the control allocation model (actuator and effector
model), that will be viewed as uncertain parameters to be adapted. Assume there exist
a virtual control 7. = k(r, x) that uniformly exponentially stabilizes the equilibrium of (1).
Introducing an instantaneous cost function J(t, x, u), the minimization problem

minJ(t, x, u) st T.—OU x, u)0= 0 3

defines the nonlinear static control allocation problem. Since 6 is an unknown parameter
the idea is to use an indirect certainty equivalence adaptive control approach based on
the estimate . The cost function J incorporates objectives such as minimum power
consumption and input constraints (implemented as barrier functions).

Optimizing control allocation solutions have been derived for certain classes of
over-actuated systems, such as for aircraft and marine vessels, (Enns, 1998), (Buffington
et al., 1998), (Serdalen, 1997), (Bodson, 2002) and (Hirkegard, 2002). The control
allocation problem is generally viewed as a static or guasi-dynamic problem that is
solved independently of the dynamic control problem considering non-adaptive linear
models 7= Gu. The main advantage of this is modularity and the ability to handle
redundancy and constraints.

In the present work we consider dynamic non-linear adaptive optimal control
allocation. Non-adaptive nonlinear control allocation has been recently studied using
conventional nonlinear programming methods (Johansen er al., 2004).

In (Johansen, 2004) a control Lyapunov function is used to derive an exponentially
convergent dynamic update law for u (similar to a gradient/Newton-like optimization)
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such that the control allocation problem (3) is solved dynamically. It is shown that it is
not necessary to solve the optimization problem (3) exactly at each time instant. It is
shown that convergence and asymptotic optimality of the dynamic control allocation in
combination with a uniform globally exponentially stable trajectory-tracking nonlinear
controller guarantees uniform boundedness and uniform global exponential convergence
of the system. One advantage of this approach is computational efficiency, since the
optimizing control allocation algorithm is implemented explicitly as a dynamic nonlinear
controller. Solving (3) explicitly at each sampling instant requires a computationally
more expensive numerical solution of a nonlinear program to guarantee optimality. In the
present work we extend the results and ideas in (Johansen, 2004) with the introduction
of set-stability and adaptation in the control allocation model.

2. Parameter adaptation in the allocation equation
The first order optimality conditions for the Lagrangian
I, x, u, A O)=J(t, x, )+ (1. — O, x, w)0)2

defines local solutions to the optimizing control allocation problem (3). The design of the
optimizing control allocation and adaptation laws are based on the following adaptive

optimizing control Lyapunov function (aoclf)

Vi(t, x, € 0, u, ))=aVo(t, x) +% 70,0 + % Yo x: +% (%g% + %T:—D 4
where

e=x—24% 5)

F=fi(r, ) HAG— D) +g(t, DO, x, w)h (6)

>0 is an arbitrary constant, f=0—~8 and the design matrices satisfies A=AT>0,
Qv=0}>0 and Q.= Q! >0. The first term in (4) contains the Lyapunov function
inherited from the exponential stable virtual controller:

Assumption 1. There exists a differentiable function Vg:[0, ©) X R"— R and positive
constants c|, ¢z, ¢3, ¢4 such that V=0

a | xP=Voit, ) =c: || x|P

aVy ovy 2
2 D+ 2 (0 0f( x k()= =6 x|
av,
‘-—‘—’(r,x) <cllx]
ox

The last term in (4) incorporates the first order optimality condition for the Lagrangian
as in (Johansen, 2004). The second term is standard extension of the Lyapunov function
for the certainty equivalence approach (Krstic er al., 1995), while the third term is
introduced to make © = ®f— 1, such that 7— 7. which will be shown to support the
convergence of 0 —0 as t— . The time derivative of V) along the trajectories of the

system is given by

. i
V,= cr( Vo (t, x)+ ﬂ/-Q(t, X)f(t, x, k (4, x)))
ar ox
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+olu+ i+ 0—€'QAe

(al’ ol +8_1T 4
ou dxdu 9A oxal

)g(t, x®, x, u)d

+0g(t DO, x, W)+ 07,0

vy
+0 e (t, x)g(t, )P, x, u)0—1,) )
where
g= - 3@ al
a ou ou ®)
_Qz_f_al (g{ 82 +al’ 3% )é
ou dton \ ou abau  al abal
olf a4l al" 9% ol" 8%l
(— == )f(t, x, B+ 9)
ou 0xou 04 axaz al atal
3 al  ®OY al
g=—————— — (10)

We will show that optimization and adaptation laws can be designed by the aoclf. For
system (1-2) we propose the following parameter update law

b=0; 'O} (1)

T =2 T 12
ro= (G 51 205 )
Oy=g(t, x)O(, x, u)
the certainty equivalent control allocation update laws
u=—Ta+{+ (12)
A= —WB+o+ o (13)

with T=T7>0, W=WT7>0. { and ¢ satisfy the algebraic equation
oL+ BT+ 0=0 (14)

where 8o =0 + a’{o + B o, and {o and ¢ are defined by

il &
. BT T I A AL
(Co; ¢o)= —H ( atou” AtdA ) (15)
where
)
ou” dit

U
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For the purpose of analyzing the prospects of the above control allocation, we write the
closed loop dynamics in the compact form

:=F(2) (16)

where F(z) is given by (1-2), (5), (11-13), p=1, po=1ty, 2=(p; x; € f; u, ), ) is a
column-stacking operator and p is the time-state. By introducing the optimal set

a={zeR'| G(z) =0} (7
where,
~ ol al
G(Z)_(‘x’f’e’é;,a—;{),

the set-stability analysis can be done in the same way as for a time-invariant model.
We present the concept of set-stability through definitions 1-6 from (Teel et al.,

2002).
Definition 1. The distance from a point z € R? to the set AC R? is defined by
|z|a=inf{d(z, y)|y e A) (18)

where d(z, y) can be any metric.

Definition 2, The system (16) is said to be forward complete if, for each zp € R? the
solution z (7, zg) is defined on [0, ).

Definition 3. A nonempty closed set AC RY is a forward invariant set for (16) if the
system is forward complete and Vzy € 4 the solution z(t, z0) € 4, Vi=0.

Definition 4. The system (16) is said to be finite escape time detectable through |- |4, if
a solution z(f, zo) is right maximally defined on a bounded interval [0, T), then

limlleZ(t, 20) lﬂz «@.

Definition 5. For the system (16), the closed set 4 is Uniformly Globally Stable (UGS)
if the system (16) is forward complete and there exists p € % such that, ¥V zo € R?

2, Vi=0

[z(t, z0) [a=<p (|20

Definition 6. For the system (16), the closed set 2 is Uniformly Globally Asymptotically
Stable (UGAS) if it is UGS and for each R, £ > 0 there exists a T(R, &) > 0 such that,

VZ() [ fRe

|ze|a=<R, t=T= |z(t, w)|a=¢

Definition 7. A smooth Lyapunov function for (16) with respect to a non-empty, closed
forward invariant set 2C R? is a function V: RY— R that satisfies: (i) there exists two
. functions &, and o, such that for any z € RY, a,(|z]x) =< V(z) < oa(|z]4). (ii) There
exists a continuous and positive semidefinite function 3 such that for any

dV
zeWM74m5~MMﬂ
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Theorem [. Assume system (16) is linite escape-time detectable through | 2] If there
exists a smooth Lyapunov function for the system (16) with respect to a nonempty,
closed, forward invariant set 4, then 4 is UGS with respect to (16).

Definition 7 and Theorem | are found in (Skjetne, 2005).

Assumption 2. There exists constants ga, ¢; >0 such that Vs, x and u.
ad amp’
Qllds __(I. X “)__(tv X, “)SQZId (19)
du du

Assumption 3. The function [ is differentiable and satisfies f(z, 0, 0) = 0. Moreover, it is
globally Lipschitz, uniformly in s with Lipschitz constants L, and L, in x and 7. The
function @ is twice differentiable and globally Lipschitz, uniformly in #, with ®(, 0,
0) =0 and Lipschitz constant Ly in v and u. The function k is differentiable and Lipschitz

in x, uniformly in f, with (s, 0)=0.
Assumption 4. The cost function J is twice differentiable.

Assumption 5. There exists constants k> > k; > 0 such that Vr, x, u, 7 and

o)

a-l A
kllr< m(r’ X, U, )\vs 0)<k2,r (20)

Assumption 6. For all ¢, x, and 0, the set

(5ai52) 0=}

{u’ /:.E Rr-!-d

is bounded.
Claim 1. The set 4 is a closed and forward invariant set for the system (16).

Proof. From Proposition 1.1.9 (b) in (Bertsekas er al., 2003) we have that G : RY— RY%
is continuous iff G~ ' (V) is closed in RY for every closed U in R?. From the definition
of 4, U= {0}, and since G is continuous (by assumption 2-5), 4 is a closed set. The set
is forward invariant if at ¢, G(z(1})) =0 and
d(G(z(1)))
dt

with respect to (16). We have G(z(1))=0=(% ¢ ()=0, by assumption 3 and
equations (1-2, 5 and 1), and («, f3. . ¢) =0 from (10-9). It remains to prove

( _r/(i_/_ ) (/_(i ) —0
dton” dtdz ’

dol o @ ol @t
. = _.._+ — = —=
a0z

=0vr>f|

We get

e P Lo
dids s OXOA A
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and
dal 84 oM M oM . U

=—+ + + +
diou drdu - 0xdA " ouou . 9Adu’ obou

thus from the arguments above

(228 (o) (25:23)
dtdu’ drad ’ dtdu ' 3t
then by inserting control law (12-13) we get
(o oy _g
drou’ dial
and G(z(t, z(4))) =0 for all >, which proves the claim. n

Claim 2. The system (16) is finite escape-time detectable through |z|a.

Proof. G~ '(0) is bounded by assumption 6 and || 0] < =, and since all states except the
time-state p are represented linearly in (17), the system (16) is finite escape time
detectable through |z|s. [

Claim 3. There exist positive constants k;, k; such that

er(lalP + AP+ 181

olTal oIl ol .. -
(A A )
(auau a1 34 0700
=i (e + | 2 + (|01 @n

Proof. The result follows by applying the same procedure as in proof of Proposition 1
in (Johansen, 2004). | |
The main results are summarized in the following propositions.

Proposition I. Consider the system (1-2), with the update-laws (11-13), then

(i) The algebraic equation (14) is always solvable, and there exists a unique solution
for { and ¢.

(ii) There exists class % functions o and o s.t o (|z|p =Vi(@) = w2 (|z|z)

(iii) The set 4 is rendered UGS and

( -5-95-9£)-+0 51—
XG0 ou :

Proof.

(i) This follows from (@ =0 and = 0) < (5o =0) by lemma 1 and 2 in (Johansen,
2004).

(if) This follows from claim 3 and assumption 1.

(iii) By inserting the update laws (11-13) and the algebraic equation (14) into (7), we
get

avy

dx

. Ve
Vi=o (Tr {t, )+ (t, x)f(t, x, ©) )
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—a'Ta— WS — e"Q.A.e
+0 %g(t, x)g(t, )P, x, u)b-1) (22)
then by following the same procedure as in (Johansen, 2004)

= =0 cr= Ml - (oD~ 2 )P

M
B (lmin(w) B _O-l—l_ ) ”13”2 - 'lmin(QfAf) " 6"2

where
M=m (L 1@64 LTL'qN.‘ULz)
a Ql
thus >0 and > 0 can be chosen such that there exist positive constants ks, ks, ks and
ke satisfying

al |° az

al

With V; as the Lyapunov function candidate Theorem 1 is satisfied and the UGS
property is established. Thus G (z(t)) € L=. The convergence result follows from

—kellelF = —a3(|z]) =0 (23)

V= —'k3”x"2" _kS

Il_ip;f as(lz(s)lz)dsstl_i)rr; —Vi@(s)ds=V,(z(r)) < (24)

and

al al ( 3l al)< ( 3l aZ)
: K
(x’ Y au) SRFYRF w(lzl)=\x a7 Je s

1
* min (ks, ks, ks, ks)”
By the assumptions we also have G € L« since |z|q € Lo. Thus according to Barbalat's
lemma,

where

al
(x €:i u )-—)0 as t— o, |

Definition 8. A piecewise continuous signal matrix ®: R— R"*™ is Persistently Excited
(PE) if there exists constants y, A> 0, such that

A
L f OT(D) D) dr=yl,xm V>t (25)
4

Claim 4.

== Jyy
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Proof. From Proposition 1 we have € e £, and

f eTedt = e + f e"Aedt — f €"dyfdr + J’ 7,50, "Thdt (26)
lim [ 26" Aedr < @7)
1= = i
4
lim f | €T0u®50; 'Th| dt < oo 28)
=2ty
Integral (28) follows by inequality
_ ave ol 34 o &
2| eT0e®105 T < || T DD +‘| L = =
|le" o305 'Tofl =< || "@pD5Q5 'Ol o ou dxou a2 3xd

In addition to the integrals from above we will use
~ 1 .. =
—fercbgedtS—f(eTCDg(Dge)dt+E1J-QTGdt
2#] 2
which follows from Young’s inequality, Vi, > 0.

llm f 0" o dyfdr = hm j’ (7. + 2€A&+ €e)dr

>

T
< lim (—1— TybTe + 2L 079) dr+K.
o 2m 2

where K.> 0 defined by (27-28), thus

lim OT(d) @y — ] ,,,,(,,,)f)ah‘<L lim (fT(I)gCD dr+ K. <

=% 0 ﬂ| r—x

since &y € L, the claim is proved. i}

Proposition 2. If ®y(¢) is PE and the results from Proposition 1 holds, then 4 is UGAS.

Proof. From Proposition 1 and definition 5, we have
[2(r, 20)[a=p (| 20|, VEZ 19 (29)
where p e X». Fix R>0 and £>0. Define Q=p(R), w=min {Q, p~"(e)} and

é(z)—G(Z)TG(Z)—070+0T(¢ 1Py — 2 lme)g

Note from claim 2 and Proposition 1, that

w0+ T {
f E(z(r, Zo))dfsllj)rgf ¢(z(t, 20))dt=B (30
o

o
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where B is given by w and Q. Define
2B
=

k]
Y1y

where w; and y, are specified later, and assume that V|z0|a=R there exists 1'e [to. T
such that | z(r’, 0)[a=p~'(e). Thus [z(1, wa=p(]z(r, ;-'an_qJ'—":-p(p'r(s}}Zs for
]zo ,gSR and t =T + 1y, which satisfies definition 6. Suppose this assumption is not true.
i.e., there exists |z[4=R such that [2(r', 2)|a>p ' (e)V1'e [ 4, T]. Thus

w=<|z(r', 20)[a=QVF' e [ty, T]
which from (21) imply that there exist positive constants w;, and Q) such that
=G (2, 2)G(z(F, )= Vi'e [n, T]

By introducing 8= {1, 2, ..., g}, and T (1,) = arg max;| G'(z (1, 20))|, we can construct
a new vector G, by Gf(")( 2(t;, 20)) = GT s z(1, 20)) and G2M® (z(t, 20)) =0. We use

i=1(t) and since

|G(z(¥, 2)]|== \/%-' Vi € [t, T]

|Ge (2(t5, 20))] >\/%.

Since G is uniformly continuous, there is a positive constant

(4B

| G2 (2(, 20)) — Gi(z(1, )| < \/%Vt?to

we have

such that

and V> with
W)

lt,—tIStH,( ?)

Hence, Vt e [1, t;+ t,4,] we have

|Go(2(t, ) | =1 GL(a(t, 20)) = GL(2(8, )+ Gl(2(s, 20))|
= |Gi(z(ts, )|~ Gi(2(t, 20)) = Gz (1, o))

o _ o fon
> @

79
00 ) dt

which implies that

Is + ]

E(z(s, zO))dt=f (G(z(t, )" AcG(z(t, 20)) —

I

Is+1 , ‘u,QI
= (Gc(z (’, ZO)) AGGE(Z(f, Zo)) dt — T ) dr

£3
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= (z:zwl min (3, l)—ﬂzi)—')(tm—t;) (32)
where
Bnx2n 0 0
A= 0 Lot 0 ;
0 0 syt ay

_ ( @i min(y, 1) _ m )
" 4q 2

and u, is chosen to keep 7, strictly positive. Thus
0+ T n+T
f f(Z(f, ZO))dt> 2 Y1) (ts+l_ts)=2B
o $=1p

which is a contradiction to (30). Since & (z(t, zg)) = 0 uniformly then from (21) we have
that 4 is uniformly globally attractive, and consequently by applying the UGS property
from Proposition 1, 4 is UGAS. |

Remark 1. If 7 is known (e.g. measured using accelerometers), the 6 can be estimated
directly from the allocation model 1= ® (s, x, u)6.

Remark 2. If

alT 8% oI 8%
Ip= (— +— + ,)
°=\%n oxon " oxaxal €2

is used in the update law, then

Vi= —callx|P—aTa— WS — e"Q.Ace+ 20L.cs || x|

sl
a2
+20Leca || x || (Low || | + Lax || x D 1| O] (33)

and some local stability properties, dependent on the system and virtual controller, may
be concluded (the proof is not included in this paper, but the result is shown in the

simulation example).

Remark 3. The matrices I' >0 and W >0 may be time-varying, without changing any
theoretical properties, provided they are bounded away from zero. Newton-like methods
can therefore be implemented by taking

@ )= —y(HH+el ) (@ B+ (& )+ (o do) (34)
where >0, e=0 and

a€ 6(3)

(o5 ﬂ):H(E;EE

are time-varying.
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3. Simulation example
We consider the case study of manceuvering a low-speed and overactuated ship where

the unknown parameters in the allocation model represents thrust loss. The non-adaptive
version of this example was found in (Johansen, 2004). The example is based on
(Lindegaard and Fossen, 2003) and the scaled-model ship dynamics are given by

”:=R(I/J) v
‘?=—M—1Dl’+M_I('L'+b) (35)
7= Q)

and the augmented integral action &= i1 The position 17, = (x: ¥ ) = (x — xy; V= v
Y — ) is the north, east positions and compass heading deviations. Subscript ¢ denotes
the desired state. v = (u; v; r) is the body-fixed velocities, surge, sway and yaw, T is the
generalized force vector, b= (b by b3) is a bias due to wind and current and R(Y) the
rotation matrix function between body fixed and earth fixed coordinate frame. In the
considered model there are five actuators; the two main propellers aft of the hull, in
conjunction with two rudders, and one tunnel thruster going through the hull of the
vessel. w; denotes the propeller velocity and J; denotes the rudder deflection. j = 1,2
denotes the aft actuators, while i =3 denotes the tunnel thruster. This model can be

rewritten in the form (1) and (2) by:
x=(C; ne; v), 0=(01; 62)

T= (115 T35 T3), 4 = (w); W W3 dy; §y)

X1+ X; 0
(D(u) = 1,+Y, Y;
D3 5.3

G3= —0,X + 1Y — L Xo+ b, Yo
Xi=Ti—-D; Y=L
where the propulsion forces are defined by
kgt w;=0

T"._
{k;-,,,.lw,-la).- ;<0

L= {Ti(l + ki@ Kesi, + kesy, | 6i )0, @=0
' 0, W< 0

e { T;(1 + kow@) ko, | 8 |+ koD, @20
"o, ®w<0

The unknown parameter vector () represents thrust loss. 0> is also related to the
parameters k7, and k7, in a multiplicative way. This suggest that the estimate of 0, gives
a direct estimate of the tunnel thruster parameter. A virtual controller 7, that stabilizes
the system (35) uniformly, globally and exponentially for some physically limited yaw
rate is proposed in (Lindegaard and Fossen. 2003) and given by

te= — KRS = KRT G — Kov (36)
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The cost function used in this simulation is the same as was used in (Johansen, 2004)

3 2
Jay= D, ki wi| i+, g

i=1 i=
| w; | = 18Hz, |d;|=35 deg
ky=k:=0001, £k=0.02, g, =¢.=500

Consider a wind disturbance vector b =0.05(1; 1; 1), the design matrix Ac=lyxo, the
true parameter vector # = (1; 1)’, its update gain matrix Qp = diag(l; 1) and the ¢ error
weight Q. = diag(a, 10%; 2-10% 2-10%), a=10° (1; 1; 1; 1; 1; 1), and the parameter update
law from remark 2. The implementation of I' and W was done according to remark 3
where y =1 and ¢ = 10~°. The simulation results are presented in the Figures 1—4. At
t; =200 and 1 = 400 the parameter update law are excited and the estimated parameters
converges to the true values. For different initial conditions, it can be shown that 60,
since ® may not be PE over a sufficient timespan for the reference signals. With white
noise perturbations or harmonic references, ® can be shown to be PE for all ¢ such that

0 — 0. This is verified by simulations.

o3 ! ! T ! !
(P17 WIUEDRVS | SN | SN SN- SUMPIRNTI SVPONPY: SRPR-
:(,ﬁ 0.1 . T ....g..................é........ . ....E...... -
] \j_ w
] | i i i i
0 160 200 300 a0 500 &0

Figure I. Simulation results—the solid lines represents positions while the dashed lines represents
references
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Figure 3.

t

Simulation results—computed rudder deflection by the allocation algorithm
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Figure 4. Simulation results—the parameter adaption
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