“State-space representation of radiation forces in time-domain vessel models”

Authors: Erlend Kristiansen, Åsmund Hjulstad and Olav Egeland,
Affiliation: NTNU, Centre for Ships and Ocean Structures and NTNU, Department of Engineering Cybernetics
Reference: 2006, Vol 27, No 1, pp. 23-41.

Keywords: State-space realization, Frequency-dependent characteristics, Time-domain, Convolution integral, Discretization

Abstract: The paper presents a method for generating a new and efficient time-domain formulation of the equations of motion for a vessel with frequency-dependent hydrodynamic coefficients. Previous work on this topic has relied on the use of convolution terms, whereas in this work state-space models are used. This leads to a model formulation that is well suited for controller design and simulation.

PDF PDF (1842 Kb)        DOI: 10.4173/mic.2006.1.2

DOI forward links to this article:
[1] Jingjin Xie and Lei Zuo (2013), doi:10.1007/s40435-013-0025-x
[2] Frank Lemmer (né Sandner), Steffen Raach, David Schlipf and Po Wen Cheng (2016), doi:10.1016/j.egypro.2016.09.186
[3] E. van Groesen and Andonowati (2016), doi:10.1016/j.apm.2016.10.018
[4] (2018), doi:10.3390/en11010169
References:
[1] ANTOULAS, A. SØRENSEN, D. (2001). Approximation of large-scale dynamical systems: an overview, Presented at MTNS, Perpignan, June 19-23.
[2] CUMMINS, W. (1962). The impulse response function and ship motions, Schiffstechnik, 101-109.
[3] EGELAND, O. GRAVDAHL, J. (2002). Modeling and simulation for automatic control, Marine Cybernetics.
[4] FOSSEN, T. (1994). Guidance and control of ocean vehicles, Wiley, New York.
[5] GUGERCIN, S. ANTOULAS, A. (2000). A comparative study of 7 algorithms for model reduction, Proceedings of the 39th IEEE Conference on Decision and Control 2000; pp. 2367-2372.
[6] KRISTIANSEN, E. EGELAND, O. (2003). Frequency-dependent added mass in models for controller design for wave motion damping, Sixth IFAC Conference on Manoeuvering and Control of Marine Craft; pp. 90-95.
[7] KUNG, S. (1978). A new identification and model reduction algorithm via singular value decompositions, Proceedings of 12th Asimolar Conference on Circuits, Systems and Computers; pp. 705-714.
[8] LOZANO, R., BROGLIATO, B., EGELAND, O. MASCHKE, B.I. (2000). Dissipative Systems Analysis and Control, Springer, London.
[9] NEWMAN, J. (1977). Marine Hydrodynamics, MIT Press, Cambridge, MA.
[10] NEWMAN, J. LEE, C.H. (2004). WAMIT User Manual, WAMIT Inc, www.damit.com/manual.htm.
[11] OGILVIE, T. (1964). Recent progress toward the understanding and prediction of ship motions, The Fifth Symposium on Naval Hydrodynamics, pp. 3-128.
[12] SAFONOV, M. CHIANG, R. (1989). A Schur method for balanced model reduction, IEEE Transactions on Automatic Control AC-34.7, 729-733 doi:10.1109/9.29399
[13] YU, Z. FALNES, J. (1988). State-space modelling of dynamic systems in ocean engineering, Journal of Hydrodynamics, 1-17.
[14] YU, Z. FALNES, J. (1995). State-space modelling of a vertical cylinder in heave, Applied Ocean Research 17 (5), 265-275 doi:10.1016/0141-1187(96)00002-8


BibTeX:
@article{MIC-2006-1-2,
  title={{State-space representation of radiation forces in time-domain vessel models}},
  author={Kristiansen, Erlend and Hjulstad, Åsmund and Egeland, Olav},
  journal={Modeling, Identification and Control},
  volume={27},
  number={1},
  pages={23--41},
  year={2006},
  doi={10.4173/mic.2006.1.2},
  publisher={Norwegian Society of Automatic Control}
};