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State-space representation of radiation forces in time-domain vessel
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The paper presents a method for generating a new and efficient time-domain
formulation of the equations of motion for a vessel with frequency-dependent
hydrodynamic coeflicients. Previous work on this topic has relied on the use of
convolution terms, whereas in this work state-space models are used. This leads to
a model formulation that is well suited for controller design and simulation.

1. Introduction

The concept of frequency-dependent added mass and potential damping is well
established in the formulation of the equations of motion for a surface vessel (Ogilvie,
1964). This formulation is used in identification experiments for ship models using
motion at a single frequency, and it is used in commercially available programs like
WAMIT and VERES. It was shown in Cummins (1962), that the frequency dependence
of added mass and potential damping can be seen as a consequence of a convolution
term in the radiation potential. The convolution term in the radiation potential leads to
a convolution term in the equation of motion (Cummins, 1962; Ogilvie, 1964). For
motion at a single frequency, the convolution term in the equation of motion can be
represented by frequency-dependent added mass and potential damping parameters. The
formulations of the equation of motion based on the use of convolution terms, or
alternatively, on frequency-dependent parameters are not in agreement with the model
formulations used in simulation and in automatic control. As a result of this it is not
straightforward to apply the usual methods tor simulation and for controller analysis and
design. This provides the motivation for investigating this problem further.

The main contribution of the present paper is 1o show how the equations of motion
for a surface vessel can be reformulated into a state-space form suited for simulation and
controller design. Moreover, it is shown that analysis based on the Laplace transform-
ation, state-space models and energy considerations provides additional insight into the
radiation problem. We propose a new method that generates a low order state-space
model from frequency-dependent added mass and frequency-dependent potential damp-
ing as obtained from identification experiments or numerical computations. The resulting
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model gives an accurate and computationally efficient representation of the convolution
term. This method is applied to detailed data from the panel method program WAMIT
for an offshore support vessel. It is shown that an accurate representation of all
first-order wave effects was achieved with eight states for each convolution term in the
complete equations of motion. The resulting state-space model is implemented in
Simulink in the Matlab program package, and simulations are performed.

Related work has been done for an oscillating water column in Yu and Falnes (1995)
and Yu and Falnes (1998). However, for the vessel models of this study, the approach
used in these works was found to be computationally ineffective, and impractical to
combine with already established methods for system identification and model reduction.

2. Preliminaries
2.1. Introduction

In this section we will present background material needed for the presentation of the
main results in Section 3.

The usual method for finding the hydrodynamic forces acting on a ship moving in
waves, is based on the superposition of the radiation forces due to the ship motion in an
undisturbed sea, and of the diffraction forces due to the wave forces on a non-moving
ship (Newman, 1977). lrrotational flow of an inviscid and incompressible fluid is
assumed. The velocity potential ¢ is then described as the sum ¢ = ¢r + ¢p, where the
radiation potential ¢y is due to the motion of the ship on an undisturbed sea, and the
diffraction potential ¢bp is due to the wave excitation. The pressure on the hull is
assumed to be given by

_ AR dpp
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which is a sum of hydrostatic pressure, radiation pressure and diffraction pressure. The
inertial coordinate system is shown in Figure |, with x pointing in the bow direction of
the ship, z pointing in the upward vertical direction, and y given by the right-hand rule.
Note that z =0 is placed on the undisturbed free surface. The force F and the moment
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Figure 1. Coordinate system with generalized coordinates.
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M on the ship hull can then be described as sums of hydrostatic terms, radiation effects
and diffraction effects. The radiation force and the radiation moment are given by

R= = —’@E
PR = pHSBn g @

MR=—pf (7 x i) 2 (3)
4 at

For notational simplicity the motion is described with generalized coordinates
g=1(qi ... g¢)" as shown in Figure 1, and associated generalized forces © = (1, ... Te) .
The results can be extended to the usual kinematics as given in Fossen (1994). The
equation of motion is given by

6
zmjqu=‘5}{+t}!+r’p+‘rf+‘tf )
k=1

where m;; are the inertia parameters of the ship, r,'-* are the hydrostatic forces, 7. are the
radiation forces, 7} are the diffraction forces, ;' are the actuator forces, and 7} are the

external forces.

2.2. The radiation problem with memory effects

To simplify the presentation, we will consider a ship with no forward speed. It is
straightforward to extend these results to a ship with a steady forward speed as in Ogilvie
(1964).

Define 7 as the position vector of a point on the hull surface S, measured in a fixed
reference system, and g as the position vector of the same point, but measured in a
reference system moving with the hull. When the ship is in its equilibrium position, the
two position vectors are assumed to coincide. The deflection of any point of the hull can

now be written as
6
7 Fe=), qUT, 0 (5)
i=1

where
g 74 i=1-3

i : ©)
g i i-3X 7), i=4-6

‘7:‘( ?9 ’) =

are the deflections in surge, sway or heave for i = | — 3, respectively, and the rotations
in roll, pitch and yaw for i =4 — 6, respectively. It is assumed that the deviations gi(r)
are sufficiently small so that second-order errors can be left out of the analysis. Thus,
78 can be used as argument for ¢, as only second-order errors occur from this. The
radiation potential ¢r must satisfy certain general boundary conditions (Ogilvie, 1964),
that are omitted here for the sake of brevity.

A solution that satisties the general boundary conditions is (Cummins, 1962)

[§] {

O
Pr(F. =D GOl P)+ D

i=1 i=1J -

77, 1= Dg(n)dt o

where ; and yi( ¥, t) satisfies certain specific boundary conditions (Ogilvie, 1964).
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The physical interpretation of the potentials ¥ 7) and (7, ) is made clear by
considering an impulse in the velocity g;=, which is equivalent to a step in gi=y. The
resulting radiation potential is

G =00)=r( 7, =W P)+ 7,0 ¢))

It is seen that the potentials y;( 7) represent the instantaneous response of the fluid
due to the ship motion, whereas y{ 7, f) are impulse responses to the ship velocity.

2.3. Equation of motion including memory effects
The radiation force can be written

6 6 6
R_ R . .
T=15— 2, bude > birge = 2, Cidi
k=1 k=1 k=1

6 t (9)
~> | Kjkit — 0)gi(o)do
k=1 - =

where Tt j represent a steady radiation force due to a steady forward speed. It is noted
that in Newman (1977), the radiation potential is assumed to be ¢r = =8_, gai, which
means that the convolution terms has been set to zero. Suppose that the velocity is a unit
impulse §i(f) = 6(r). Then the convolution terms are given by

f Kt — 0)3(0)do = Ku(r) (11)

This means that Kj(f) is the impulse response function in direction j to an impulse
in velocity in direction k. Note that if the positions were considered as the inputs, then
Kj(t) would be step response functions.

The equation of motion is found to be

6 6 6 6 !
Z (my + ap)g + E bpgr + 2 Cipgr + E Ku(t — 0)qi(o)da = TS- + 1:}) + rf‘ (12)

k=1 k=1 k=1 k=) J - =

It is noted that the effect of wave excitation is captured by the diffraction force 1},
and that wave excitation is not involved in the derivation of the convolution term of the
radiation force. Moreover, it is noted that the derivation of (12) was done without
resorting to frequency analysis results. In particular, the concept of frequency-dependent
added mass and potential damping has not been introduced so far.

Equation (12) is a general equation of motion for a ship with a steady forward speed
U. The calculation of the hydrodynamic coefficients au, bj, ¢ can be done in several
ways, but special consideration must be taken about the presence of a steady forward
speed, as can be seen in previous equations. The program package WAMIT used in later
simulations to calculate the hydrodynamic coefficients and frequency-dependent added
mass and damping does not support the presence of a steady forward speed. Thus,
following calculations are done assuming no forward speed. The only consequence of
this in the form of (12), is that the steady radiation forces r_"f, is sct equal to zero.
Moreover, for a vessel in steady forward translation, the steady radiation force tt; will
be cancelled by the actuator force tj’-\.
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2.4, Convolution terms from experimental data

The parameters of the equations of motion can be found from model experiments
with single frequency motion gi(f) = g cos wt with g(#) =0 for ¢ <0. Then, according
to standard arguments all terms in the equation of motion will eventually be sinusoidal
and of the same frequency w. In particular, we note that the convolution integral can be

written (Ogilvie, 1964)
!
f Kt — 0)gi(o)do

= —a0(+ fo

This leads to the equation of motion in the widely used form

o

Kj(0)sin wo da) + gu(0) ( f Kj(o)cos wo da) (13)
0

6 6 6

> (my+ o)) + X ful@)ge + 2 i =7+ + 1 (14)
k=1 k=1 k=1
where the frequency-dependent added mass o;{w) and the frequency-dependent potential
damping parameters f;(w) are given by

l x
(W) = aj — — f Ku(f)sin ot dt (15)
w Jg

Pi(w) = by + f( Kj(t)cos wt dt (16)
)

It is seen that this formulation captures the frequency dependence of the added mass
and the potential damping parameters that is observed in identification experiments with
single-frequency motion. However, the equation of motion in the form (14} is only valid
under the assumptions that g(t) = ¢ cos ¢, and that t,p and ‘Cf‘ are sinusoidal functions at
frequency . The model formulation (14) with frequency-dependent added mass and
potential damping cannot be used to describe transient dynamics (Cummins, 1962). We
therefore, turn our attention back to the formulation based on convolution terms, and

develop this further.
The Fourier transformation Kj() of the impulse response function Kj(r) is

I?jk(w) =f Ki(t)cos rt dt —jf Kj(n)sin cor dt (7
0 0
where j2= — 1. The impulse response Kji(f) may be assumed to be of finite energy

(Ogilvie, 1964). Therefore, the Fourier transform I?jk(w) must converge to zero as the
frequency  tends to infinity, i.e. lim._, = Ku(w)=0. This implies that %(>) = a; and
Pi(2) = b,-k., and it follows that Kj(#) can be found from either of the inversey(=) = ay
transformations

x

2
Ku(h) = —;J w]a(w) = au( % )]sin wt dw (18)

0

2 x
Ku(t)= — 7;.[ [Bi(w) ~ Bu(=)]cos ot dw 19
0

As (19) converges considerably faster than (18), (19) is used for computations.
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2.5. Convolution

The concept of convolution in the time-domain is well established in linear systems
theory for the description of linear time-invariant systems. Convolution integrals are
closely related to Laplace transforms and state-space models, and as a background for
the main result of the present paper a brief explanation of this is given.

Let u(?) be a signal, and define the signal y(f) by a convolution integral

¥ = j H(t — o)u(o)da (20)

where H(?) is the kernel, which is assumed to be causal so that H(t) =0, whenever t < 0.
The Laplace transform £{-} of the kernel H(?) is the transfer function

H(s)= L{H(®)} = f H(e* dt
0

Let the Laplace transforms of the signals u(r) and y(f) be denoted by

i(s) = L{u®)) = f u(He* dr 21
0
¥s) = L{y(N} = f y(re” dt (22)
0
Then (20) implies that
$(s) = H(s)ia(s) (23)

Moreover, there exists a state-space realization of order n with a state vector
x(f) € R"*' and matrices A e R"*', Ce R'*" and D e R so that

X(2) = Ax(r) + Bu(p) (24)

y(1) = Cx() + Du(1) (25)
The transfer function is given by the state-space realization according to
As)=CI-A)"'+D (26)

If the signal u(t) is given, then the signal y(f) can be calculated from a state-space
realization using a time-integration method like a Runge-Kutta method. Calculation of
y(t) using a state-space realization is more efficient than a calculation based on the use
of the convolution integral. Moreover, simulation packages like MATLAB and SIM-
ULINK are based on the use of state-space formulations.

2.6. Model reduction

The main idea of this paper, which will be developed in the following sections, is
to replace the computationally expensive convolution terms in the equations of motion
with a state-space representation of low order. In the method we propose the convolution
term is first converted o a high order state-space model. This high order state-space
model is then converted to a low order state-space model that will approximate the
convolution term with sufficient accuracy. This process of converting a high order
state-space model to a low order approximate state-space model is called model
reduction. In the work reported in this paper model reduction was performed using the
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balanced truncation method. An overview on the balanced truncation method and other
model reduction techniques can be found in the survey articles (Antoulas and Sorensen,
2001; Gugercin and Antoulas, 2000).

The balanced truncation method is described as follows. Consider a stable linear
system of order n with scalar input 1 and scalar output y given by

%(t) = Ax(f) + Bu(r) (27)

y(1) = Cx(r) + Du(?) (28)

where A e R"*", Be R"*!, C e R'*" and D e R. The corresponding transfer function
H(s) is given by
A(s)=C(sI~A)~'+D. (29)

Model reduction is used to approximate the system with a reduced system of order
k<<n given by

X(6) = Ax(¢) + Bu(?) (30)
y(#) = Cx(1) + Du(t) 3n

where A e R**4 B e R**'and C e R'*¥ and the associated approximate transfer

function is
H(s)=C(sI-A)"'+D 3D

The accuracy of the approximation is characterized by the infinity norm ||{|= of the
difference between the transfer functions H(s) and H(s) defined by

| (s) ~ H(s) ||= = sup | A(jw) — H(jew) | (33)

The balanced truncation algorithm ca: be written sequentially as:
(1) Compute the Grammian matrices ? and Q by solving the Lyapunov equations
AP+ PAT+BBT=0 (34)
ATQ+ QA +CC"=0 (35)

(2) Compute the controllability Cholesky factor L. and the observability Cholesky
factor L, from ?=L[L. and Q=L]L..
(3) Compute the SVD
USVT=L]L. (36)

where U, V have orthonormal columns and X =diag(o, ... g,), where
g =Z0=..20,=0.

(4) Compute the balancing transformation T =L.VZ~'"T~' =%~ "2U"L;.
(5) Form the balanced realization as Ap =T ~'AT, Bs=T 'B, Cs = CT.

(6) Select the model order k and partition the matrices Ag, B, Cs in the form

A A\ (B
Ap= , Bs = , Cg=(C Cy 37
Ay Axn B,

where A € R***, Be R**' and C e R'** in combination with D give the
balanced truncation.
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When model reduction with the balanced truncation technique is used, the reduced
system will be stable, and the infinity norm of the approximation error will satisfy

| A(s) = HS) ||« < 2(0k+1 + ... + 02) (38)

where o¢; are the diagonal entries of 2 as calculated in (36).

3. Proposed solution: state-space approximation of convolution terms
3.1. Outline

The formulations of the equation of motion based on the use of convolution terms
are not in agreement with the model formulations used in simulation and in automatic
control. As a result of this it is not straightforward to apply the usual methods for
simulation and for controller analysis and design when convolution terms are present.

Given the radiation problem in the form

t

6 6 6 6
> (g + @)+ D bads + X caqi + D, | Kilt — 6)gu(o)do = T+ (39)
k=1 k=1 k=1 f=1d - =

The following solution is proposed: the convolution term
t
J' Ku(t — 0)qi(o)do

is replaced by g, which is the output of an approximate low order state-space model.
This model is found by recognizing Kj(t) as the impulse response of the vessel motion
G«(f). The impulse response is used as input for a system identification method, yielding
a high order state-space model, where the order depends on the temporal resolution of
K;(1). A model reduction method is then applied to yield a low order state-space model
with output p.

3.2. The state-space representation
Convolution term j may be written

!

Mix = J Kt — 0)q(o)da (40)
where we have introduced u; as the output of a linear system with input g, and kernel
K;(). Such a linear system can be represented by a state-space realization

it = Apji + Bjgu (41)
Hit = Cn&ji + Djngr 42)

Given Kju(?), it is possible to find some state-space realization (41, 42) that given g

outputs p characterized according to (40). Then the equation of motion (39) can be
written '

6 6 6 6
kzl(mjk + @)= = 2 bude— X Cuge— 2 M+ TG+ T+ T (43)
= k=1 k=1 k=1

Ein = Apix + B (44)
e = Ci&jx + D (45)
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As can be seen, the entire equation of motion is on state-space form. Having a
complete state-space model will require far less computational power, not to mention
processing memory, than a mixed model incorporating convolution terms. Thus, this
model will be suited for implementation in digital controllers commonly used in control
applications. In addition, a vast number of analysis and control design tools become

available.

4. Analysis of state-space model using energy considerations

4.1. Passivity of the radiation problem

In this section the passivity properties of the radiation forces will be investigated
(Egeland and Gravdahl, 2002). This can be done by assuming that ¢p = 0, as superpo-
sition is assumed. The vessel motion given by the velocities ¢, induces fluid motion
described by the radiation potential ¢g. The energy

] [ 6 . T
Vr =§ z Z lageg; + cirgrqj] + f ui(ng(tdr =0 (46)

k=1k=1 0

of the fluid due to the radiation potential ¢ is thus supplied to the fluid by interaction
with the ship. Energy-flow arguments lead to the conclusion that the time derivative of
the energy Vx is equal to the power supplied from the ship motion, i.e.

6
VR = qTTR = 2 ()j‘l’}‘ (47)
k=1

This implies that the mapping q+> g is passive (Lozano et al., 2000). Passivity is
a structural property of the model that can be used to check the validity of model
representations (Kristiansen and Egeland, 2003).

4.2. Positive realness
The Laplace transformation of the convolution integral is

L{ f Ki(t — G)c]k(o')drr} = sKu(s)gi(s) (48)

where Ki(s) = L{Ka(t)}, Gi(s) = L{qi(1)}, and where it is used that £{§(1)} = 5Gi(s). The
Laplace transformation of the equation of motion (12) is then found to be

6
> ((m + ap)s® + (b + Ri(s)s + ci)dinls) = T0(s) + T(s) + T (s) (49)
k=1
Considering Equation (49), and defining K(s)={ Kii(s)} as the Laplace transform of
the impulse response function Kji(f), the Laplace transformation of the radiation force by
the vessel motion q can be written
L l
) = [As +B+K(s) +- C]si’](s) (50)
s
where
A = {ay}, B = (b;} (51)
K@) ={Ky»)). C={cy) (52)
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The passivity of the mapping ¢~ tr implies that the transfer function matrix
= o 1
HR(S) =As+B+ K(S) + ; C (53)

is positive real. This implies that

HrGw) + Hr(jw)*=0, Vo #0 (54)

5. Generation of approximate low order state-space model

This section presents a demonstration of the proposed method for the calculation of
a low order state-space representation of the radiation force convolution term. Frequency
dependent added mass aj(w) and damping Bu(w) for a ship can be calculated numeri-
cally using software packages such as WAMIT, which is a commercially available
program package developed by WAMIT Inc. WAMIT is a radiation/diffraction panel
program developed for linear analysis of the interaction of surface waves with offshore
structures. WAMIT is based on a 3D panel method, utilizing Green's theorem to derive
integral equations for the radiation and diffraction velocity potentials on the body
boundary. The free surface boundary condition and body boundary condition are
linearized, and the flow is assumed to be potential, harmonic and free of separation or
lifting effects. Thus, only the case with no mean forward speed is considered here. For
further details, see Newman and Lee (2004).

In this work, a 3400 panel hull geometry of an approximately 110 m long, 6000
tonnes deadweight offshore support vessel is used with WAMIT version 6. The hull
geometry data is assumed to be symmetric about the xz-plane. Values for Pix(w) were
calculated in the frequency range 0.1 < < 6.5 rad/s using 0.1 rad/s intervals. Two of
the coefficients are shown in Figures 2 and 3. Note the large differences between the
maximum and minimum values, in some coupling modes the force even changes sign.
Variations in some of the coefficients at high frequency, seen here in the coupling mode
between sway and roll, shown in Figure 3, are expected to be related to the panel size
in the hull geometry. Moreover, note that the peak at @ = 3 rad/s in Figure 3 is expected
to be an irregular frequency. Although WAMIT has an option for removing such
irregular frequencies, this was not utilized here.

5.1. System identification

The convolution term kernels, or impulse responses, Kj(#) are calculated from (19).
Ki(t) is found by trapezoidal integration over @ with 4w =0.01 for each ¢, spaced by
the time-step #=0.05s. Any other integration method could have been applied. A
splines method has also been tested, but as the results were not significantly better, the
trapezoidal integration method was chosen for simplicity. To capture the wanted
dynamics, the upper limit for # must be chosen after Ku(r) converges. Here, the upper
limit was taken to be 15s, which is just after Ky(r) converges to zero for all modes.

The state-space model is generated from K(f) by applying the system identification
scheme based on the Hankel singular value decomposition method proposed by Kung
(1978), available as the function IMP2SS in the Robust Control Toolbox of MATLAB.
A following scaling of the output matrices Cj/.-_and Dj; with the time-step h, produces the

high-order system matrices Ay, By, Ci and Dj.
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Hydrodynamic coefficients as function of frequency
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Figure 2. Hydrodynamic coefficients in surge.
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Figure 3. Hydrodynamic coefficients in coupling mode sway-roll.
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5.2. Model reduction

The state-space model from IMP2SS is of high order. The order can be controlled
indirectly, by giving an explicit bound of the H”-norm of the error between the
approximate realization and the exact realization as a parameter in the IMP2SS-function.
If no such parameter is given, a default bound is used, yielding a state-space model with
high order.

The original model order is proportional with the number of data points given by the
ratio 7/h, and is close to 280 in several modes. As the model order is directly connected
to the number of data points rather than the dynamics of Kj(f), one may expect that
significant reduction of the model order of the state-space model can be achieved while
retaining the desired properties of the state-space approximation. Such properties can be
small approximation error or preservation of stability and passivity.

As a desired property of the method to generate a state-space approximation of the
radiation force is to control the accuracy and model order, the truncated balanced
reduction method with Lyapunov balancing is selected. Moreover, the original model
order is no larger than 280 due to the rate of which Kj(t) converges and the temporal
resolution chosen, which is in model order a range where the truncated balanced
reduction method will be computationally efficient.

The truncated balanced reduction method is implemented in a numerically robust
way in the Matlab function BALMR from the Robust Control Toolbox. See Safonov and
Chiang (1989) for details. The output is the new low order state-space matrices A, Bj,
C;: and D;. Models of order between 3 and 12 have been calculated in relation to this
work.

5.3. Results
The system equations have now been restated as
6 6 6 6
Z (mjk + ajk)qk = — 2 bjqu = 2 Cikgk — Z Wi+ Tlp + ‘tjA (55)
k=1 k=1 k=1 k=1
Ein = Apln + Birdy (56)
wix = Culj + Digi 57

Note that here r,'-z is omitted, as no external forces exist in this work. The results of
the model identification and reduction, and thereby the verification of the accuracy of the
reduced model, can be visualised by plotting the impulse responses of the approximated
low order state-space models together with the original impulse response functions Kj(#).
This is shown in Figures 4 and 5 for two modes. Here i in & denotes the order of the
approximated state-space system. Note that the impulse response function for Ka()
shown in Figure 5 has small oscillations for ¢ near the upper limit of ¢+ = |5 s. The period
of this oscillation is approximately 7=2s. which is consistent with the irregular
frequency of w= 3 rad/s seen in Figure 3.

Another property used to check the validity of the low order state-space model is the
structural property of passivity. As Lyapunov balancing was selected in the model
reduction, there is no guarantee of retaining any passivity properties. However, this can
easily be examined by checking the Nyquist plots for positive realness. In Figures 6 and
7, the Nyquist plot for the diagonal element ti; and ty for i=13-5 are plotted. In this
work, K3,(s) and K3,(s) are positive real, while Ki,(s) is not positive rcal. But in sway,
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x 10 Mode 1 to mode 1
12
—K
---- porder 3
10} ~—-porder 8
_4 1 1 ]
0 6 10 15
s
Figure 4. Impulse response in surge.
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Figure 5. Impulse response in coupling mode sway-roll.
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Figure 6. Nyquist diagram of K),(s), where i denotes the approximation order, i = 5 (dashed), i =4
(dash-dotted) and i = 3 (dotted), impulse response function before reduction (solid).
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Figure 7. Nyquist diagram of K4(s), where i denotes the approximation order, i = 5 (dashed), i = 4
(dash-dotted) and i = 3 (dotted), impulse response function before reduction (solid).
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even Ki(s) is not positive real. Note that different modes have different lower
boundaries of the available order of the state-space models to ensure valid energy
properties of the approximated system. In the simulations that follow, eighth-order

state-space models are used.

6. Simulations

6.1. Setup
The equations of motion used in the simulations are
6 6 6 6
> (e + a)ie= — 2 bude— 2 cugqe— 2, e+ 77 + 7 (58)
k=1 k=1 k=1 k=1
Eir = Aulic + Bigi (59)
tie = CiuCjn + D (60)

where the radiation force is found utilizing the method presented in Section 3.

The vessel is simulated in six degrees of freedom excited with long-crested waves.
Thus, the sea state is described using a JONSWAP spectrum with 8 s peak wave period
and 2 m significant wave height. Wave elevation and wave loads are calculated using
superposition of 1000 wave components, with wave load r,’?(t) in mode j given by

r]p(t) = ZKJD,A, sin(wit — kyx cos 0; — kyy sin 0; + @;; + €;) (61)

where A; is the amplitude of component i at frequency w;
A= V2S(w)Adw (62)

k; is wave number (k; = w?/g), x and v are vessel position, Ki; and ¢;; represent force
response amplitude and phase, and ¢; is a random phase for each wave component. Kf;
and ¢;,; vary with the wave frequencies and the direction of the incoming waves relative
to the vessel heading, and are calculated by WAMIT.

Simple control forces tf‘ are added to keep the vessel near equilibrium. Position is
controlled using a simple limited PD-controller and a fully actuated thruster
configuration in the horizontal plane yielding a corrective force

I+ Ts
As) = Py ——

T T T A8 = gi(s)) (63)

where Pj. = m;/40, Ty=15s and 2 =0.01. In order to avoid exciting the vessel with a
step from suddenly activating wave loads at r =0, the wave loads increase, during the
first 30 s of the simulation.

All coefficients are calculated from WAMIT using the same frequency interval as the
hydrodynamic coefficients. Further, all coefficients are calculated for nine evenly spaced
wave headings between 0 and 180°. Values for all headings are calculated using
symmetry and linear interpolation.

The kinematics are modelled as a rigid body influenced by forces in the body frame.
Although linear theory assumes forces apply on the mean hull position in the equilibrium
frame, the small motion assumption justifies this approach. The kinematics block is
general, using the total inertia matrix (6 X 6 rigid body inertia and added mass) as a
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single parameter. The separate force contributions; radiation, diffraction and restoring
forces are calculated in separate blocks. The dynamics are modelled as linear, and
superposition is assumed.

The simulations are done using Matlab/Simulink on a 2.4 GHz Pentium IV. Using
eighth-order approximations of the radiation force (for each coupling mode, for a total
of 144 states) and recalculating the wave exciting force from 1000 wave components
every 0.3 s, 300 s of simulation time took little more than 20s.

6.2. Results

Figure 8 shows the responses in all modes for head sea. The significant wave
amplitude was 1 m. In heave, the response amplitude operator (RAO) was 0.3 at the peak
frequency and this is in agreement with the observed heave response with amplitude
about 0.3 m. In pitch, the RAO was 1.03 at the peak frequency and this is in agreement
with the observed pitch motion with amplitude about 1 m. This simple test indicates that
the wave motion calculated from the WAMIT model is of the right order of magnitude.

Figure 9 shows the ship motion with waves coming from 45° starboard of the ships
heading (quartering sea). The waves now excite all modes. The response in heave is now
larger than in Figure 8, as should be expected. The various force contributions in sway
for the motions shown in Figures 9 and 10.

In Figure 11, the waves approach from starboard. Comparing with quartering sea,
motion in sway increases. There is still surge motion, caused by coupling effects from
heave and pitch.

7. Conclusions

The forces from the radiation potential and the resulting equation of motion for
harmonic motions are commonly described using hydrodynamic coefficients that are
frequency-dependent. This results in a model formulation that only is valid for harmonic
motion, and which does not convert easily to the standard formulations used in automatic
control. The frequency dependence can be explained by including a convolution term in
the expression for the forces from the radiation potential, or more correctly, the model
representation utilizing a convolution term can be simplified into a frequency-dependent
model formulation. This paper has described the successful application of model
identification and reduction techniques using these convolution terms as input, resulting
in low order state-space models of the radiation forces. Further, this paper outlines a
procedure for generating a low order state-space model that can be utilized with other
physical systems represented by convolution terms.

To ensure retaining energy properties of the system, the necessary model order varies
between the different modes and couplings. In surge, a third-order model appears
sufficient, whereas in the coupling mode between sway and roll with the most complex
dynamics an eighth-order model seems necessary.

Comparing the approximate state-space model order with the number of data points
in Kj(1), the calculation of the radiation forces for simulation purposes is more efficient
using an approximate state-space model than evaluating the convolution integral directly.
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