“Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes”

Authors: Ole M. Aamo and Thor I. Fossen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2002, Vol 23, No 3, pp. 161-226.

Keywords: Flow control stabilization, feedback

Abstract: The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS) that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity), as well as applications of Lyapunov stability theory.

PDF PDF (6083 Kb)        DOI: 10.4173/mic.2002.3.1

DOI forward links to this article:
[1] Romeo Tatsambon Fomena and Christophe Collewet (2011), doi:10.1260/1756-8250.3.2-3.133
[2] Tudor-Bogdan Airimitoaie and Christophe Collewet (2014), doi:10.2514/6.2014-2974
[3] Tudor-Bogdan Airimitoaie and Christophe Collewet (2014), doi:10.2514/6.2014-2938
[4] Viorel Barbu (2011), doi:10.1007/978-0-85729-043-4_3
[1] AAMO, O.M., KRSTIC, M. BEWLEY, T.R. (2002). Control of Mixing by Boundary Feedback in 2D Channel Flow, Submitted.
[2] ABERGEL, F. TEMAM, R. (1990). On some control problems in fluid mechanics, Theoret. and Comput. Fluid Dynamics, 1, 303-325 doi:10.1007/BF00271794
[3] BAKER, J., ARMAOU, A. CHRISTOFIDES, P.D. (2000). Drag Reduction in Incompressible Channel Flow Using Electromagnetic Forcing, In Proceedings of the American Control Conference, Chicago, Illinois, USA.
[4] BALOGH, A., LIU, W-J. KRSTIC, M. (1999). Stability Enhancement by Boundary Control in 2D Channel Flow-Part I: Regularity of Solutions, In Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, USA.
[5] BALOGH, A., LIU, W-J. KRSTIC, M. (2001). Stability Enhancement by Boundary Control in 2D Channel Flow, Accepted subject to revision for IEEE Transactions on Automatic Control.
[6] BALOGH, A. (2002). On stabilization of 3D channel flow, Private communication.
[7] BAMIEH, B., PAGANINI, F. DAHLEH, M. (2000). Distributed Control of Spatially-Invariant Systems, Preprint.
[8] BARBU, V. (1997). The time optimal control of Navier-Stokes equations, Systems and Control Letters, 30, 93-100 doi:10.1016/S0167-6911(96)00083-7
[9] BARBU, V. SRITHARAN, S.S. (1998). H-Infinity-control theory of fluid dynamics, R. Soc. Lond Proc. Ser. A. Math. Phys. Eng. Sci., 45.1979, 3009-3033.
[10] BEWLEY, T.R. LIU, S. (1998). Optimal and robust control and estimation of linear paths to transition, Journal of Fluid Mechanics, 365, 305-349 doi:10.1017/S0022112098001281
[11] BEWLEY, T.R. (2001). Flow Control: New Challenges for a New Renaissance, Progress in Aerospace Sciences, 37, 21-58 doi:10.1016/S0376-0421(00)00016-6
[12] BEWLEY, T.R. MOIN, P. (1999). Technical report TF-76, Stanford University.
[13] BEWLEY, T.R., MOIN, P. TEMAM, R. (2000). DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, Preprint.
[14] BEWLEY, T.R., TEMAM, R. ZIANE, M. (2000). A general framework for robust control in fluid mechanics, Physica D, 138, 360-392 doi:10.1016/S0167-2789(99)00206-7
[15] BEWLEY, T.R. AAMO, O.M. (2002). On the search for fundamental performance limitations in fluid-mechanical systems, Proceedings of the 2002 ASME Fluids Engineering Division Summer Meeting, Montreal, Quebec, Canada.
[16] BEWLEY, T.R. (2002). Analysis of a versatile moving-belt mechanism for the control of wall-bounded flows, In preparation.
[17] BIRD, R.B.. STEWART, W.E. LIGHTFOOT, E.N. (1960). Transport Phenomena, John Wiley and Sons, Inc.
[18] BUTLER, K.M. FARRELL, B.E (1992). Three-dimensional optimal perturbations in viscous shear flows, Physics of Fluids A, 4, 1637-1650 doi:10.1063/1.858386
[19] CANUTO, C. HUSSAINI, M.Y., QUARTERONI, A. ZANG, T.A. (1988). Spectral Methods in Fluid Dynamics, Springer-Verlag.
[20] CHRISTOFIDES, P.D. ARMAOU, A. (1998). Nonlinear Control of Navier-Stokes Equations, In Proceedings of the American Control Conference, Philadelphia, Pennsylvania.
[21] CORON, J.-M. (1996). On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM. Control Optim. Cal. Var.,1, 35-75 doi:10.1051/cocv:1996102
[22] CORON, J.-M. (1998). On null asymptotic stabilization of the 2-D Euler equation of incompressible fluids on simply connected domains, Prepublications 98-59 Universite de Paris-Sud, Mathematiques.
[23] CORTELEZZI, L, LEE, K.H., KIM, J. SPEYER, J.L. (1998). Skin-friction drag reduction via robust reduced-order linear feedback control, Int. J. Comput. Fluid Dyn., .1-2, 79-92 doi:10.1080/10618569808940866
[24] CORTELEZZI, L. SPEYER, J.L. (1998). Robust reduced-order controller of laminar boundary layer transitions, Physical Review E, 5.2 doi:10.1103/PhysRevE.58.1906
[25] FATTORINI, H.O. SRITHARAN, S.S. (1998). Optimal control problems with state constraints in fluid mechanics and combustion, Appl. Math. Optim., 3.2, 159-192 doi:10.1007/s002459900087
[26] FERNANDEZ-CARA, E. GONZALEZ-BURGOS, M. (1995). A result concerning controllability for the Navier-Stokes equations, SIAM J. Control Optim., 3.4, 1061-1070 doi:10.1137/S0363012993253819
[27] FERZIGER, J.H. PERIC, M. (1999). Computational Methods for Fluid Dynamics, Springer-Verlag.
[28] FURSIKOV, A.V., GUNZBURGER, M.D. HOU, L.S. (1998). Boundary value problems and optimal boundary control for the Navier-Stokes system: the two-dimensional case, SIAM J. Control Optim., 36, 852-894 doi:10.1137/S0363012994273374
[29] GAD-EL-HAK, M. (1996). Modern developments in flow control, Appl. Mech. Rev., 4.7, 365-379 doi:10.1115/1.3101931
[30] GAD-EL-HAK, M. (2000). Flow Control: Passive, Active and Reactive Flow Management, Cambridge University Press.
[31] GUNZBURGER, M.D., HOU, L. SVOBODNY, T.P. (1990). A numerical method for drag minimization via the suction and injection of mass through the boundary, In Stabilization of Flexible Structures.ed. J.P. Zolesio, Springer-Verlag doi:10.1007/BFb0005162
[32] GUNZBURGER, M.D. (1995). Flow Control, Springer-Verlag.
[33] HO, C-M. TAI, Y-C. (1996). REVIEW: MEMS and its applications for flow control, Journal of Fluids Engineering, 118, 437-447 doi:10.1115/1.2817778
[34] HO, C-M. TAI, Y-C. (1998). Micro-electro-mechanical systems ´MEMS´ and fluid flows, Annu. Rev. Fluid Mech., 30, 579-612 doi:10.1146/annurev.fluid.30.1.579
[35] HOU, L.S. YAN, Y. (1997). Dynamics for controlled Navier-Stokes systems with distributed controls, SIAM J. Control Optim., 3.2, 654-677 doi:10.1137/S0363012994274926
[36] HÖGBERG, M. BEWLEY, T.R. (2000). Spatially-compact convolution kernels for decentralized control and estimation of transition in plane channel flow, Preprint.
[37] IMANUVILOV, O.Y. (1998). On exact controllability for the Navier-Stokes equations, ESAIM: Control, Optim. Cal. Var., 3, 97-131 doi:10.1051/cocv:1998104
[38] ITO, K. KANG, S. (1994). A dissipative feedback control synthesis for systems arising in fluid dynamics, SIAM J. Control Optim., 3.3, 831-854 doi:10.1137/S0363012991222619
[39] JIMENEZ, J. (1990). Transition to turbulence in two-dimensional Poiseuille flow, Journal of Fluid Mechanics, 218, 265-297 doi:10.1017/S0022112090001008
[40] JOSHI, S.S., SPEYER, J.L. KIM, J. (1997). A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow, Journal of Fluid Mechanics, 332, 157-184.
[41] JOSHI, S.S. SPEYER, J.L. KIM, J. (1999). Finite Dimensional Optimal Control of Poiseuille Flow, Journal of Guidance, Control and Dynamics, 2.2, 340-348 doi:10.2514/2.4383
[42] JURDEVIC, V. QUINN, J.P. (1978). Controllability and Stability, Journal of Differential Equations, 28, 381-389 doi:10.1016/0022-0396(78)90135-3
[43] KANG, S.M., RYDER, V., CORTELEZZI, L. SPEYER, J.L. (1999). State-space Formulation and Controller Design for Three-Dimensional Channel Flows, In Proceedings of the American Control Conference, San Diego, California.
[44] KRSTIC, M. (1999). On global stabilization of Burgers´ equation by boundary control, Systems and Control Letters, 37, 123-141 doi:10.1016/S0167-6911(99)00013-4
[45] LAGNESE, J.E., RUSSEL, D.L. WHITE, L. (1995). Control and Optimal Design of Distributed Parameter Systems, Springer-Verlag.
[46] ROZHDESTVENSKY, B.L. SIMAKIN, I.N. (1984). Secondary flows in a plane channel: their relationship and comparison with turbulent flows, Journal of Fluid Mechanics, 147, 261-289 doi:10.1017/S0022112084002081
[47] SRITHARAN, S.S. (1991). Dynamic programming of the Navier-Stokes equations, Systems and Control Letters, 16, 299-307 doi:10.1016/0167-6911(91)90020-F
[48] SRITHARAN, S.S. (1998). Optimal control of viscous flows, SIAM.

  title={{Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes}},
  author={Aamo, Ole M. and Fossen, Thor I.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}