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The field of flow control has picked up pace over the past decade or so, on the
promise of real-time distributed control on turbulent scales being realizable in the
near future. This promise is due to the micromachining technology that emerged
in the 1980s, and developed at an amazing speed through the 1990s. In lab
experiments, so called micro-electro-mechanical systems (MEMS) that incorporate
the entire detection-decision-actuation process on a single chip, have been batch
processed in large numbers and assembled into flexible skins for gluing onto body-
fluid interfaces for drag reduction purposes. Control of fluid flows span a wide
variety of specialities. In Part I of this tutorial, we focus on the problem of
reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium
profile using boundary feedback control. The control strategies used for this
problem include classical control, based on the Nyquist criteria, and various
optimal control techniques (#,,5# ), as well as applications of Lyapunov stability
theory.

1. Introduction

1.1 Why flow control?

Flow control involves controlling a flow field using passive or active devices in
order to bring on desired changes in the behavior of the flow. For instance, laminar
flow, which is characterized by paralel layers of fluid moving in a very regular and
deterministic way, is associated with considerable less drag, or friction, at wall-fluid
interfaces, than its counterpart, furbulent flow, which is characterized by small scale
velocity components that appear to be stochastic in nature. On the other hand,
turbulent flow may exhibit better mixing properties than laminar flows. Usually,
laminar flows are unstable, and will unless controlled, evolve into turbulent flows.
Common control objectives include (Gad-el-Hak, 2000):

® Delaying or advancing transition from laminar to turbulent flow;
e Suppressing or enhancing turbulence, and;
e Preventing or provoking separation.

The benefits that can be gained from these control objectives include drag
reduction, lift enhancement, mixing enhancement, and flow-induced noise suppres-
sion. For example, a turbulent pipe flow induces considerable drag, or friction, at the
bounding wall. It is the resulting overall drag force that the compressor has to
overcome in order to pump fluid through the pipe. Increasing the throughput can be
achieved by simply installing a more powerful compressor, but the result would be
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increased energy consumption. Since laminar flow induces much less drag, designing
a flow control system that relaminarizes the flow will permit higher throughput
without increasing energy consumption.

Mixing processes are encountered frequently in applications, and the quality of
the resulting mixture directly affects the quality of the end product. This is the case,
for mstance, in combustion, where the quality of the fuel-air mixture is essential for
power generation, and in process industry, where the quality of various mixtures
affect chemical reaction rates and the purity of end products. Mixing is usually
obtained using ‘brute-force’ techniques, such as mechanical stirring, jet injection and
stirring valves. These methods, and all other methods for mixing, are associated with
a drag penalty. The application of flow control to mixing problems seeks to minimize
this penalty.

In flows past bluff bodies, vortex shedding occurs. Vortices are periodically shed,
alternating between the upper and lower part of the body, leading to periodic forcing
of the body. This may be a problem, for instance for offshore structures, because the
body starts to vibrate which eventually leads to destruction from fatigue. By applying
flow control, one may alter the behaviour of the flow around the structure in such a
manner that vortex shedding is suppressed or dampened, prolonging the lifetime of
the structure.

The boundary feedback laws designed for these problems are distributed. That is;
sensing and actuation are applied at every point on the boundary of the flow domain.
While this may sound unrealistic, the micromachining technology that emerged in
the 1980s, permits rapid sensing and actuation on the micron scale, and thereby
enables real-time distributed control of fluid flows.

It is clear from the examples mentioned above that the main objective in flow
control is to lower operational expenses. We conclude this motivational section with
a quote from Gad-el-Hak (2000): “The potential benefits of realizing efficient flow-
control systems range from saving billions of dollars in annual fuel costs for land,
air, and sea vehicles to achieving economically and environmentally more competitive
industrial processes involving fluid flows.

1.2. Scope of this tutorial

The concept of flow control contains a wide variety of theoretical and techno-
logical branches, as the examples in the previous section suggest. In this tutorial we
will narrow the treatment down to recent developments in two problem areas that
have attracted much attention. The first is stabilization of internal prototype flows,
namely the channel flow (2> or 3D) and the pipe flow. The channel flow is the flow
contained between two paralel plates, and the pipe flow is the flow contained in the
interior of a cylinder with circular cross section. The second problem we will study,
is mixing in flows. Mixing is the topic of Part II of this tutorial.

Stabilization of incompressible fluid flow in a plane channel has been studied
quite extensively, and the wall sensing/actuation of this flow has become a standard
benchmark problem in the area of flow control, see, e.g., Bewley (2001) and Gad-el-
Hak (1996) for recent reviews. In Joshi et al. (1997) stabilizing PI controllers for two-
dimensional channel flow were designed for a reduced-order model of the linearized
Navier-Stokes equation, obtained by a standard Galerkin procedure. The work was
continued in Joshi ez al. (1999), where LQG design was applied in order to obtain
optimal controllers for this reduced-order model. LQG/LTR of the streamfunction
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formulation of the Navier-Stokes equation was also the focus of Cortelezzi et al.
(1998) and Cortelezzi and Speyer (1998), where the latter reference reports the
remarkable result of drag reduction to 50% below the laminar level. In Kang et al.
(1999), a reduced-order model of 3D perturbations (at a single wavenumber pair
{ks k. }) was developed, and LQG control design was applied to this model.
Drag reduction by means of body forcing inside the domain applied through
electromagnetic forcing was suggested in Baker et al. (2000), where an observer-based
approach was applied to a reduced order, linearized model. A nonlinear attempt was
presented in Christofides and Armaou (1998), where Galerkin’s method was used to
derive a reduced-order model of the full, nonlinear, two-dimensional Navier-Stokes
equation. A nonlinear control law was given, along with conditions under which
closed-loop stability is obtained. The results were applied to Burger’s equation, which
is the one-dimensional Navier-Stokes equation, including the nonlinear advective
term. In Bewley and Liu (1998), LQG and .#, control theories were applied to the
linearized three-dimensional channel flow. A major finding of this paper was that
properly-applied controls significantly reduce the nonorthogonality leading to energy
amplification mechanisms in such systems. The three-dimensional nonlinear problem
was tackled by the application of optimal control theory in a finite-horizon predictive
setting (Model Predictive Control) in Bewley et al. (2000), resulting in relaminariza-
tion of Re=1700 turbulent channel flow. Optimal controllers are generally not
decentralized, but recent results on the structure of controllers for spatially-invariant
systems indicate that one can obtain localized controllers arbitrarily close to optimal
(Bamieh er al., 2000). This result has been confirmed for plane channel flow in
Hogberg and Bewley (2000), where the Fourier-space control problem formulated in
Bewley and Liu (1998) was modified and successfully inverse-transformed to the
physical domain, resulting in well-resolved, spatially-localized convolution kernels
with exponential decay far from the origin. Such spatial localization is an important
ingredient both in relaxing the nonphysical assumption of spatial periodicity in the
controller formulation and in facilitating decentralized control in massive arrays of
sensors and actuators (see discussion in Bewley (2001)). The mathematical details of
controllability and optimal control theory applied to the Navier-Stokes equation,
such as existence and uniqueness of solutions, and proofs of convergence of proposed
numerical algorithms, are discussed in Abergel and Temam (1990), Barbu (1997),
Barbu and Sritharan (1998), Bewley et al. (2000), Coron (1996), Coron (1998),
Fattorini and Sritharan (1998), Fernandez-Cara and Gonzalez-Burgos (1995),
Fursikov et al. (1998), Gunzburger et al. (1990), Gunzburger (1995), Hou and Yan
(1997), Imanuvilov (1998), Ito and Kang (1994), Lagnese et al. (1995). Sritharan
(1991), Sritharan (1998).

Global stabilization by boundary control of Burgers’ equation was achieved in
Krstic (1999). For the 2D case, globally stabilizing boundary control laws were
presented in Balogh et al. (2001) (using wall-tangential actuation) and in Aamo er al.
(2001) (using wall-normal actuation), for small Reynolds numbers. These control
laws were fully decentralized, and numerical simulations showed their ability to
stabilize flows at large Reynolds numbers, although the mathematical analysis was
valid for small Reynolds numbers, only. As noted in Balogh et al. (2001) and Bewley
(2001), fully decentralized controllers have an implementational advantage in that
they can be embedded into MEMS (Micro-Electro-Mechanical-Systems) hardware,
minimizing the communication requirements of centralized computations and facili-
tating scaling to massive arrays of sensors and actuators. Using the wall-tangential
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control law, Balogh (2001) was able to relaminarize a simulated turbulent 3D channel
flow at Re =4000. The control law designed in Aamo ez al. (2001) for wall-normal
actuation can easily be generalized to both 3D channel flow and pipe flow.

The remainder of this tutorial treats selected works in detail, starting with a
review of the governing equations of incompressible fluid flow.

2. Governing Equations

2.1 Kinematics

We will be studying the behavior of a fluid contained in the domain €, as shown
schematically in Figure 1. Associated with the fluid is its density, p:Q x R, - R. At
every time instant 7 > 0, and to every point peQ, we assign a vector valued quantity
which is the velocity, W, of the fluid at that point in time and space. That is, we are
interested in the evolution of a vector field W:Q x R, — R”, where » is the dimension
of the problem. Associated with the velocity field is a pressure field, which is a scalar
valued function P:Q x R, — R. We will study problems in 2 and 3 spatial dimensions
(2D and 3D), using cartesian and cylindrical coordinates. In cartesian coordinates,
we denote a point p e Q with (x, y) in 2D and (x, , z) in 3D. In cylindrical coordinates,
we denote a point peQ with (r,6,z). The two coordinate systems are shown
schematically in Figure 1. The velocity field is denoted W(x,y, z, t) = (U(x, y, z, 1),
V(x,v,z,1), W(x,¥,z, 1)) in 3D cartesian coordinates, where U, V and W are the
velocity components in the x, y and z directions, respectively (W(x, y, £) = (U(x, y, 1),
V(x, v, t)) in 2D). In cylindrical coordinates, we denote the velocity field W(r, 0, z, ) =
(Vi(x,y,z,0), Vo(x,y,2,0), VAx,y,z1), where V,, V;, and ¥, are the velocity compo-
nents in the r, 6 and z directions, respectively. The density, p, and the pressure, P,
take the same arguments as the velocity, but are scalar valued. Below we will derive
the conservation equations in cartesian coordinates, and state the corresponding
equations in cylindrical coordinates. The derivation follows Bird et al. (1960).

2.2. Conservation of mass

Consider the stationary volume element in Figure 2. Writing a mass balance over
the volume, we have

rate of mass accumulation = rate of mass in-rate of mass out

Figure 1. The domain in which the fluid is contained is denoted Q. Two coordinate systems
will be used in this report: cartesian coordinates, denoted (x, y, z), and cylindrical coordinates,
denoted (r, 8, 2).
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Figure 2, Control volume for derivation of the governing equations,

where
rate of mass in = (pU) [,AyAz + (pV) |,AxAz + (p W) LAxAy
rate of mass out = (pU) |, . s, AYAZ + (p V), 4 4y AXAZ + (P W), 4 4. AVAz
Thus, we get

fgmﬂyﬂ_ = — (P — (PO LIAYAZ — (pV) |y s ay— (0¥) ,)AxAz

—({(pW) ;1 az— (PW)].)AyAz

Dividing by the volume and letting Ax, Ay, and Az approach zero, we get

o _ ApU) _ApV) _pW)

ot ox ay oz
We will be dealing exclusively with incompressible fluids, for which p is constant.
Consequently,

U 2oV ow
axtayta =0 M

Equation (1) is referred to as the equation of continuity.

2.3. Conservation of momentum

Again consider the stationary volume element in Figure 2. Writing a momentum
balance over the volume, we have

rate of momentum accumulation = rate of momentum in — rate of momentum out

+ sum of forces acting on system
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So for the momentum in the x-direction, we have
rate of momentum in = (pU?) |, AyAz + (pUV) |,AxAz + (pUW) |, AxAy
rate of momentum out = (pU?) |, 4 s, AVAZ + (pUV ) |, 4+ 4,AxAz
+(pUW) |12, AxAy
sum of forces acting on system = (T, |y — Tux lx +ax)JAVAZ + (T |y — Tyx |y + 4y ) AXAZ
+ (Tox [LAXAY — T, |+ 4. )AXAY
+(P[y— Plyras)AvAz

where 1;; denotes the viscous force (per unit area) acting in the direction of j on a
face normal to the i-direction, and P is the pressure (i.e. the pressure force per unit
area). We get

Q%)TU)AxAyAF —(PU) s+ ax = (PU) |)AyAZ = (pUV )|y 1 ay = (pUV) |,)AxAz

—((pUW) | 1a: = (0UW) | DAXAY — (T |+ ax — Tux x)AVAZ
= (Tyx |y + 8y = Tym [P )AXAZ — (Toy o1 4z — Tax | JAXAY
— (Ply+vax— Pl)AyAz
Dividing by the volume and letting Ax, Ay, and Az approach zero, we get
8pU) | HpU?)  SpUV) , dpUW) _ 0P oo 0ty Om

ot ox oy &z Ox ox oy 0z
For constant density, p, we get

L U U aU U, oV W
Par T (Ua_J’V@JFWa) ”U(a 3y az)

oP Ot Ot Oty

T ox  ox ay 0z

and using equation (1) yields

2oy R T T T T Bl g M B
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Similar derivations for the momentum in the y and z directions yield the complete
set of equations

Y oy Tl g e IS S ox ox oy 0z o

6_U+ au oU oU OP Oty Oty 07y,
ox dy oz |

av [ oy av _av\ oP &, dt, o,
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It remains to insert a constitutive equation relating the viscous forces 1;; to the fluid
motion W= (U, ¥V, W). We will exclusively considcr Newtonian fluids, which in
conjunction with incompressibility yield the following relations (Bird er al., 1960)

oU (V oW

Tyx = _2# a s Ty = 2.“ ay 2“ oz (5]
au ¢V

Ty =Ty = _#(54- ax) (6)
av ow

Tye = Ty = _ﬂ'(_az_‘l' ﬂy) (7)
oW oUu

T'zx=fxz=_au(a+az) (8)

where the coefficient p is called the viscosity of the fluid. Inserting equations (5)—(8)
into (2)—(4) yields

U (Y, U, yol op (e*U U *U
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and using equation (1) we finally get
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oV eV eV v\ e [V *V &V
(at+Ua Vay+Wa)‘ 6y+'u(6x2+8y2+622) (10)

Plar TV TV v War dz o Ty Yoz

ow ow ow oWy _6P ;W W W (1)
ot 0x dy 0z

Equations (9)-(11) is the celebrated Navier-Stokes equation. In vector form, equations

(1) and (9)(11) can be written compactly as

LY

diviW) =10

W W-W=—yprEaw
ot p p

where V denotes the gradient operator, A denotes the Laplace operator, and div is
short for divergence.

2.4. The non-dimensionalized Navier-Stokes equation

2.4.1. Cartesian coordinates For many flow geometries, the Navier-Stokes equations .
can be written in non-dimensionalized form by introduction of a characteristic length

and a characteristic velocity. In the resulting form of the equations, all physical

parameters (fluid properties and geometrical constants) are lumped into one para-

meter, which characterizes the behaviour of the flow. This simplifies exploration of

the parameter space considerably. Denoting the characteristic length D, and the

characteristic velocity ¥, we can do a change of variables in such a way that the new

variables are dimensionless

(U*, V*, W*) = (g 4 W),P*z ,t*=gt

C

p
w_ X o x_ Y x_Z
Y=Y Tt Th

So we get
oU _ ,0U* o _ ¥ oU*

6_({_176U* 6x*___f/aU*
ox  ox* dx D ox*

oP 6P*8x*_pl726P*
6x—p ox* ox D ax*
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and similarly for the other derivatives occuring in equations (1) and (9)-(11). Inserting
these relations into equations (1) and (9)(11) yields

oU v ew
axtata = (12)

FUG AV o A W= =t ol 53 1-3})2+a2

au ol E:'U cu oP 1 (O*U @&*U @*U (13)
o ox ay 0z ox
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'§+Ua VE WE @+ 32+ o2 5‘22
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T W - _ N

o +U ax T 3y ™ 2z ! Re(é‘xz + ay? T o (15)
where we have defined Re = pDV/u, and skipped the superscript * for notational
convenience. Re is called the Reynolds number, and is the only parameter in equations
(13)—(15). In vector notation, equations (12) and (13) (15) become

di(W) =0

?+(‘W V)W——VP+}; AW

2.4.2. Cylindrical coordinates A good choice of coordinate system may simplify
mathematical analysis substantially. It is usually convenient to select coordinates
such that domain boundaries coincide with surfaces on which one coordinate is
constant. Thus, the obvious choice of coordinates for pipe flow is cylindrical coorid-
nates. In cylindrical coordinates, equations (12)-(15) become (see, for instance, Bird
et al. (1960)),

19 Lay, oV,
y oI H, g =0 (16)
v, v, Vay, V' oy, eP 1(af1a
ot + Ké‘r_-'-_;_ﬂg_ r +K—z_ Cor E(ﬁr(r 61‘( K))
(17)
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2.5. Perturbations and the linearized Navier-Stokes equations

2.5.1. Cartesian coordinates Suppose (U, V, W,P) is a steady state solution of
equations (12) and (13)—(15), that is

oU oV ow oP
(E:Eaﬂaa)z(oaoaoao) (20)
and
U oV oW
a‘l-”é;—i*-é;—o 2D
~0U oU  .oU 9P 1 (0*U o0 o*U
L 2
Uax V@y W z Ox Re(ax2 + y? + 622) (22)
oV .oV .oV oP 1 (o*V 8%V otV
0L w0 23
x+Vy+Wz 8y+Re(6x2 oy> 02) 23)
oW oW . O0W oP 1 [(e*W W W
ox +V oy +W62 _62+E(6x2 oy* * 622) @4)

uty—-0U
vAEV-V

w2AW—W

so that
U=u+U
V=v+V
W=w+W
P=p+P

and inserting into equations (12) and (13)(15), yield

du v aw U oV oW

a+@+g+a+§+a—0
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In view of equations (20)—(24), we get the perturbation equations

iy v g (25)
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The linearized equations around the steady state solution (U, ¥, W, P) are now
obtained by omitting terms that are second order in the perturbations. Thus, we get

du oOv ow

a+5+5=0 (29)
ou oU . ou oU . ou oU . du
E+ua— Ua— VE Va— Wa——l-Wg
(30)
1 (P P
ox Re\ox?  &y? = 9z2
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2.5.2. Cylindrical coordinates Suppose (V,, ¥, V., P) is a steady state solution of
equations (16) and (17)—(19). Defining the perturbation

eV,
ve & VoV
.2V,
paP—P
we get the perturbation equations
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and the linearized equations around the steady state solution (¥, ¥,, V., P)
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2.6. Prototype flows

So far, the domain on which the Navier-Stokes equations are defined has not
entered the picture. In this tutorial, the focus is on two prototype flows that have
been studied quite extensively in the literature: (1) channel flow, which is the flow
contained between two paralel plates; and (2) pipe flow, which is the flow contained
in the interior of a cylinder with circular cross section. The particularly simple
geometries of these flows make the problems mathematically tractable, as well as
numerically feasible. In addition, the pipe is encountered frequently in practice, so
understanding how to control this flow is of great importance in engineering
applications.




174 Ole Morten Aamo and Thor 1. Fossen

g
Lx

Figure 3. Geometry of the 3D channel flow.

2.6.1. 3D channel flow The domain in this case is the box Q= {(x,y,z)€[0, L,) x
(—1,1) x [0, L,)}. The flow problem is completed by specifying boundary conditions
on the boundary of the box. In the streamwise (x) and spanwise (z) directions, we
use periodic boundary conditions. That is, we equate the flow quantitites at x =0
and x=7L,, and at z=0 and z=L,. At the walls, the boundary conditions will
eventually be specified by the result of some boundary control design, but for the
time being, we select no-slip boundary conditions, i.e. U= V= W =10 at the walls
(y= =£1). Given the boundary conditions, we are now in the position to solve
equations (12)—(15) for a stecady-state solution. In solving the Navier-Stokes equations
for a steady-state solution in channel flow with no-slip boundary conditions at the
walls, we assume that the velocity field is independent of the streamwise and spanwise
directions. Thus, setting the time derivatives and the spatial derivatives with respect
to x and z in equations (12)-(15) to zero, we get

w_ 0 (41)
oy

oU erP 1 0°U

= ——t— - 42
oy ox  Re oy? “42)
ov oP 1 5*V

_ o, loF 43
oy 5y+Re oy? (43)

ow or 1 *wW
T B A 44
V@y iz Re 0y* (44)

From equation (41) we have that ¥ = constant, and since we are employing no-slip
boundary conditions, we obtain V= 0. So, from equations (42)—(44) we have that

oP 1 8*°U

—=— 4

0x Re 0y? (43)

%’zo (46)
2

oP 1 ¢“W @7)

0z Re 0)?
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From equation (46), we have that P = P(x,z), and since U= U(y) by assumption,
we get

P 1 8*U :
0P 1 &
6P oW 49)

- - — ( _ -
dz ~ * Re dy?

where ¢, and ¢, are constants. Thus, we can solve for each side of equations (48) and
(49) seperately, to get

P—'C1X+C2Z+C3

where ¢; is a constant, and

cRe
Uy)= 12 yE+ey+es

_ 2 Re
W(y) = sz__},z + ¢y + €y

where c,, ¢s, ¢ and ¢, are constants. Since only the gradient of P enters the Navier-
Stokes equations, ¢; may be arbitrarily chosen, so we set ¢; =0. By employing no
slip boundary conditions we obtain the set of equations

R
C'ze—f4+65=0
¢ Re
_12'_+C4+C5=0
¢, R
2T€ 'C6'+'C7_—‘0
c,Re
22 +eg+c,=0

so that

Cs=Ce=0

.= _CaRe

3 2
=_c2Re
! 2

Without loss of generality we select the direction of flow along the positive x-axis.
and the center velocity, U{0) = 1. We get

2

Rg,cz—ﬂ,cs—l,andcj——ﬂ

(’1__
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r=1]
z:
-2
Figure 4. Geometry of the pipe flow.
So we have the steady state solution
@7 W, By =(1-52,0,0,— > x (50)
? kd 2 ’ > H Re
Inserting equation (50) into the perturbation equations equations (25)-(28) yields
ou av ow
S 51
0x s 8y dz (1)

-—+u—+U—+V*+V7+W*=—W+ 2

ouw  fu  ou  ou  oU  du op i Pu  O*u | u (52)
Ot ox ox  dy oy 0z Ox

hild OGN § hdd il 2 _— AT
tu o+ U +v—+w + R R

ov  dv  ~ov Oy dv_ dp 1 v Py 8 53)
ot ox ox dy 0z dy  Re

ow  Ow  .ow  ow ow op 1 ({*w 0w Pw
—67+ua+Uax+v6y+waz__az+Re(82 62+8 (54)

The linearized equations around the steady state solution equation (50) are

%+2;+?;ZV=O (35)
ol ()

Choosing the channel half width (which is 1) as the characteristic length, and the
center velocity (which is 1) as the characteristic velocity, the Reynolds number is
simply Re = p/u.
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2.6.2. 3D pipe flow The domain in this case is the cylinder Q= {(r,0,2)€[0,1) x
[0,27) x [0, L)}. In the angular () direction the boundary conditions are clearly
periodic. In the streamwise (z) direction, we alse use periodic boundary conditions.
That is, we equate the flow quantitites at 0 =0 and 0 =2n, and at z=0 and z=L
In the radial direction (r) we impose the boundary conditions that the velocity be
finite at r =0, and no-slip at the wall (r = 1). We are now in the position to solve
equations (16)—(19) for a steady-state solution, which we assume is independent of
the angular (f) and streamwise (z) directions with ¥, = ¥,=0. Thus, we get

apP
0*5; (59)
cpP
0="5 (60)
P 1 1a{ oV,
% Reror( 5) L

From equations (59) and (60) we have that P = P(z), and since V, = F(r) by assump-

tion, we get
Lo v,
o Rer or (’ or ) (62)

where ¢ is a constant. The left hand side of equation (62) can be integrated to obtain
P=—cz+¢,
and the right hand side of equation (62) is separable, so we can solve it to obtain

Re
V.(r)= _f —r*+e,Inr+c,

4
Imposing the boundary conditions in the radial direction, yields
c;=0and ¢; = cf:€

and without loss of generality we select the center velocity, V(0)=1, so that
¢ = (4/Re). Thus, we have the steady state solution

(V. ¥, V.,P)= (0.0.I_rz,—%z) (63)

The perturbation equations are

1 dvy ﬁv, B
{rv,) 9 p 0 (64)

ov, av, vgﬁv, va v, o 0, a_p 1{faf1é
+v"8r+ reo r TV e +Vzaz_ 3r+Re(ﬁr(rﬂr(rv'J)

L 20y o,
r2 g0* r? 00 0 9z

(65)
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8v9+ av‘9+ﬁ%+ﬂ+ 0vy I~/26,,__1611!)_1_1 0 lﬁ(ve)
or\r or

o e T T T T T T v Re
(66)
lazi_i_gav"_kazve
r2 66>  r* 80  0z*
8v2+v6v2+v6f/2+ﬁav2+v8v2+1~/@_ 6p+ 14d
ot "or  Tor  ro0 oz ? 0z dz ' Re\r or 8r
(67)
1 &, &%,
T e
and the linearized equations around the steady state solution equation (63) are
1 fﬂvg sz _
( l)+ +5, =0 (68)

o, v, dp 1[d[10 f?zv,. 2 Ovy 0%,
o T Ta TR (6r<r " ')) ioer rion Toz) ©

2 2 7
Do g Qe 1, L (5(1 2 oy ))+}-] 5"8+%%+%"—9)(m)

ot 0z r 06 Re\or\r or

dv, OV, av, dp 1 [raf av\ 1 )
ax+"*ar+Vzaz‘_az+Re(rar("ar)+r2_95+azﬂ) B

Choosing the pipe radius (which is 1) as the characteristic length, and the center
velocity (which is 1) as the characteristic velocity, the Reynolds number is simply
Re =plp.

2.6.3. 2D channellpipe flow In 2D, the channel and pipe flows coincide. The domain
is in this case Q= {(x,)€[0,L) x (—1,1)}, and periodic boundary conditions are
employed in the streamwise (x) direction. With no-slip boundary conditions at the
wall, we have the steady-state solution

Figure 5. Geometry of the 2D channel flow.
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. 2
—{1-vz o0 -~
(Up V.. )_(I y 10*' .Ré’ ) (72)
and the perturbation equations become
éhz av
axt oy =0 (73)
du , fu -ou  ou oU  p Pu Pu
et Ut et T T ke ( ﬂyz) (74)
v v v dv_ dp 1 [&%w v
a ot 06x * "ay Ty t Re (&xz + ﬁyz) (73)
The linearized equations around the steady state solution equation (72) are
f.*u ov
ot o, =0 (76)
Ju ﬁu BU dp 1 [ &u
a Vet T Tax +Re( 2+ 52 a7
v v dp 1 [ v
oV =~ oy * Re (6}:2 + ﬁyz) (78)

Choosing the channel half width (which is 1) as the characteristic length, and the
center velocity (which is 1) as the characteristic velocity, the Reynolds number is
simply Re = plu.

2.7. Spatial discretization

For simulation purposes, as well as some approaches to control design, one needs
to discretize the equations of motion both spatially and temporally. For a general
treatment of the discretization of the Navier-Stokes equations, see Ferziger and Peri¢
(1999). In this section, the treatment of this subject 1s restricted to the methods used
in the design of controllers in the next chapter. These are so-called spectral methods
(see Canuto ef al. (1988) for an in-depth treatment of spectral methods applied to
partial differential equations, including the two methods outlined below; the Fourier-
Galerkin method, and the Chebyshev collocation method), which lend themselves
particularly well suited for the prototype flows that were described in the previous
section.

2.7.1. Spectral methods Consider the evolution equation

ou
= A(u) (79)

with the initial condition

“('x‘l 0) =y (x.)
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where ue® is the solution sought, and A is an operator containing the spatial
derivatives of u. The equation is defined on the spatial domain Q, which we will
assume is one¢-dimensional for simplicity, that is, xe Q = R. & is a Hilbert space with
scalar product

(1, V)y = J‘ uvdQ
Q

and norm
il = (i, u)*?

The bar (¥) denotes complex conjugation. In order to complete the problem,
appropriate boundary conditions must be supplied. Now, consider a series expansion
for the solution u, that is

ut(x, 1) = Zk: a (D) (80)

where the ¢, are called the trial functions, and the a, are called the expansion
coeflicients. The ¢, are assumed to constitute a complete basis for Z, so that the
series equation (80) converges to u in 2 as k— co. The approximation of equation
(80), of order N, is defined as the truncated series

uMx, 1) = D a()i(x)

kel

where 7 is a finite set of indices. Thus, u¥ e N = span{¢, |kel} < Z. Since " is an
approximate solution of equation (79), the residual

Ry = -aa—“; — A(u™)

will in general not vanish everywhere, but its projection onto the span of a set of test
functions, #~ = span{y,;|je I}, is required to be zero. That is,

N N
(aait — A(™), l‘llj)g’ = Jﬂ (aaut — A(uN))lﬁj dQ=0,jcl (81)

Equation (81) results in NV ordinary differential equation for the determination of the
expansion coefficients .

2.7.2. The Fourier-Galerkin method The Galerkin method is characterized by the
fact that the trial functions and the test functions are the same, and that each test
function satisfies the boundary conditions. When the boundary conditions are
periodic with period L, that is Q =[0,L), a natural choice for the trial functions is

== k= — N2, N2
With this choice of test and trial functions, equation (81) is called the Fourier-
Galerkin method. The ¢, constitute an orthogonal basis for 2%, since
Lij=k

L L
: = . bodx = iU=l@r/Lx g
(65,002 L B Prdx J € X {O,j;ék

0
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The main advantage of using trigonometric polynomials is the simplicity and accuracy

in calculating the derivatives
a" 2nik
Tt ( ) I (82)

As an example, assume that the operator 4 is linear, and contains spatial derivatives
up to order M. In view of equation (82), the operator 4 acting on ¢, can be
represented as the finite sum

M
A(dy) = Z Contc D

m =10

where the ¢, are complex constants. From equation (81), keeping in mind that A4 is
linear and that the scalar product is bilinear, we get

P N2 N2
(a( > _ al:(”d’k) - A( > ak(f}(.f’k)- d)j)
k=-N/2 k=—Ni2 a

Nz M
= X (a""“’ —a?) Zocmk)(m,qu)f

-
k=-npz\

(aa 0 a0 Z )

Thus, the finite set of ordinary differential equations

day(t)

M
i ay ()Y e =0,fork=—NI2,...,NI2
m=10

determines the expansion coefficients a,. The initial condition is obtained by the
usual relation (Fourier transform)

L
,(0) = ;‘ f up(x)e ™2MLxgy = — NI2,...,N/I2

]

2.7.3. The Chebyshev collocation method The collocation method is characterized by
the fact that the test functions are shifted Dirac functions, #x) = 6(x — x;), which
are defined by

I o(x — x;) fdx = f(x;)

Thus, equation (81) reduces to

() -5 -

_ [ duM(xy)
- at

(83)

—A(u”(xj}))rﬁ,j= 1,2,3,....N—1
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The boundary conditions are taken to be #¥(—1, 1) = u™(x,, £), and u™(1, £) = ™(xy, 1),
and the initial condition is uN(xj, 0)=u(x;,0), for j=0,1,2,...,N. Unlike the
Galerkin method, which is implemented in terms of the expansion coefficients, a,,
the collocation method is implemented in terms of u at the collocation points, x;.
The expansion coefficients are used in the differentiation of «" . In the Chebyshev
collocation method, the trial functions are Chebyshev polynomials (or a linear
combination of Chebyshev polynomials), which are defined on Q=[—1,1] as

¢ix) =cos (kB),0 =cos ~ Y(x)fork=0,1,2,3,...
The Chebyshev expansion of u is .

W) = Y a0 = ;J () w0 (84)
where
{2, k=0
By =
1,k>0
1
=T

The derivative of equation (84) is

dx) & dpy)
Tax =2 g

which 1s computed most efficiently by deriving a recursive formula. For k> 1, we
have that

W _ _(k—l)sin((k_l)e)ii

dpy 4 1(x) _ ; @
R —(k+ 1)sin ((k + 1)9)dx

which, by standard trigonometric relationships, gives

1 do, (%) I dép (x) - di
k+1 dx k—1 ax — 2costkO)sin(6)

Since

@__ 1 _ I
dx  J1—x*  sin(0)

we obtain

1 doy (%) I d¢kf1(x)_
K+1  dx k1 dx 2%

Thus, the derivative of the trial functions obeys the recursive formula

dox) _ k dd,,(x)
dx k—2 P + 2k 1 (x), k=2 (85)
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Repeated use of equation (85) yields

O _ o (qb.;_l(x) + i 3+ b5+ ﬁ,d}z(x))a (86)

0 for k odd

k=2 1=
1 for & even

From d¢o(x)ldx =0, dp,(x)ldx = ¢d¢(x), we see that equation (86) is valid for all
k = 0. It follows from equation (86) that the expansion coefficients for du/dx, denoted
af, are given as

d=3 ma, ®7)
modd

a=2 % ma,k=1 (88)
et B 0dd

The accuracy of the approximation is highly dependent on the choice of collocation
points, and a common choice is (Chebyshev-Gauss-Lobatto)

x;= oos%’,j:ﬂ,l,z,...,hr (89)

In the discrete case, the expansion of the approximation is the truncated series

N
u(x) = Y auhy(x)

k=0

with the discrete expansion coefficients

N
ay = J Z “{xj)ﬁf’n(-xj)“’j
Tk j=0

where
n, fork=0,N d 51,, for j =0, N
Ye=9m , an wj =
, <k<N
2 for0 %, forO<j<N

Equations (87)(88) provide a recursive formula for the calculation of the derivatives
in Chebyshev space

dﬂ;».;u=0
N
ay =2 z My =2k + D,y + a5, k> 1

m=k+1
m + kodd
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oo
|
aj=a;+ Y, mam=a1+§a§
=3

m odd

As for the Fourier-Galerkin method, the result is a finite set of ordinary differential
equations, which are difficult to write in this case. The discrete derivative may also
be expressed as a matrix multiplication, that is

du(x,) <

o _Z(@N)kjuN(xj)
j=0
where %) is the N + 1 x N + 1 matrix
(e (=1 :
—lef—z) I<k=j<N—1
s T — X7
(D )i = dy; = > (90)
ZN“+1 k=j=1
- —j=
2N? +1 _
\ — 6 k=j=N

Computationally, the Chebyshev transform is superior to matrix multiplication for
computing the derivative when N > ~ 20.

3. Stability Properties of Flows

The steady-state solutions, or equilibrium velocity profiles, obtained for the
prototype flows of Section 2.6, are parabolic in shape in the streamwise direction,
and zero in the other directions. Thus, the flows consist of paralel layers of fluid
moving in a very regular and deterministic way. These are examples of so-called
laminar flows. For wall-bounded laminar flows, wall friction, or drag, is favorably
low, and these flows are therefore target flows in drag reduction applications.
Unfortunately, they are rarely stable. In fact, stability is assured at small Reynolds
number, only.

An unstable flow is characterized by the fact that small perturbations from the
equilibrium velocity profile will grow, and eventually cause the flow to transition to
turbulent flow. Turbulent flow is characterized by small scale, appearently stochastic,
velocity components, which lead to substantially higher drag than what is present in
laminar flow. Being able to relaminarize a turbulent flow is therefore of great
importance, and can be achieved in the prototype flows studied here, by stabilizing
the parabolic equilibrium profile using boundary control. Boundary control implies
specifying the flow field dynamically on the boundary of the domain, in this case on
the channel or pipe walls, possibly based on values of flow variables taken at the
boundary. In this work, we assume that there exist sensors that provide distributed
flow information at the wall, and actuators that can set prescribed distributed
velocities. The micromachining technology that emerged in the 1980s allows for the
manufacturing of micron sized sensors and actuators that accomplish this task (see
Ho and Tai (1996); Ho and Tai (1998) for reviews).
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The problem of stabilizing the parabolic equilibrium profile of the channel flow
has been attacked from several different angles by a number of authors. Approaches
range from discretizing the linearized Navier-Stokes equations and using the tools
available for stabilizing finite-dimensional linear time invariant systems, to Lyapunov
stability analysis of the full. nonlinear Navier-Stokes equations. In the following
sections, these efforts are summarized.

4. Linearization and Reduced Order Methods

This section summarizes the efforts on stabilization of the discretized, linearized
Navier-Stokes equations. Bringing the linearized Navier-Stokes equations in the form
of a linear time invariant system constitute a major part of the work involved in
these methods. Once the state-space model is constructed, any tool from linear
control theory can be applied in a fairly straight forward manner.

4.1. 2D channel flow

In a series of papers (Cortelezzi et al., 1998; Cortelezzi and Speyer, 1998; Joshi
et al., 1997; Joshi et al., 1999), stabilization of a reduced order model of 2D channel
flow by classical and optimal control techniques is considered. The shear (2U/2y) at
a single point on the lower wall is taken as measurement, and the rate of change in
the intensity of fluid transpiration on the lower wall is the control input. The actuator
applies blowing and suction of fluid distributed as a prescribed function of x along
the lower wall. The control system setup is shown schematically in Figure 6.

4.1.1. Reduced order model The point of departure for obtaining a reduced order
model on state space form is the linearized Navier-Stokes equation for 2D channel
flow, equations (76) and (77)+78). Due to equation (76) there exists a single valued
function ¥(x, y, f) such that

RN .
H(J',J&I)_ay(-xiygf) (9]}
v(x, p, 1) = — gf(x,y, 1) 92)
no ship
Bulk flow l
——

Shear measure-

ment at x; %
m %
¥ : |

D)

-q(v<]:| iy

controller

Figure 6.  Control system configuration for controlling 2D channel flow by wall transpiration
at the lower wall.




186 Ole Morten Aamo and Thor I Fossen

The function ¢ is unique up to a constant, and is called the stream function due to
the fact that contours of constant v define streamlines of the flow. Inserting equations
(91)+(92) into equations (77)—(78) yields

&2 . 0%y ol oy op 1 R 3y T
otdy + Uc'?y@x ~ dy ox + dx  Re\ dyox? i ] 0 (93)
Ay LW ap 1 (%W 3%y
_ 0y op 4 (07 _ A
0tox Uaxz + oy o Re\ 0x® ' 0xdy? 0 (94)

Taking the partial derivative of equation (93) with respect to y and subtracting the
partial derivative of equation (94) with respect to x yield

AR A A R A AR o A A A
a2y o T Ve TR o T Ve T R\ ant TPy e ) 70

(95)

Suppose boundary control is applied by imposing a boundary condition on the lower
wall of the form

Ylx,y=—1,0=q@Owx)f(y=—1) (96)

while keeping no slip boundary conditions on the upper wall, that is

LN, PN
ay(x7y_Isr)_ax(xzy_lat)_o

Restricting the boundary control to blowing and suction of fluid through the wall at
normal angle to the wall, that is u(x,y = —1,1) = (0w /dy)(x,y= —1,1) =0, along
with the no slip condition on the upper wall, restrict the function f( ) in the following
manner

a9, n
5,(r=4D=0 07)
fy=1)=0 (98)

As in Joshi et al. (1997), we will use
1 1y 2 3
S =5y 43y =y =gy +1

although there are many other choices satisfying equations (97)—(98). When imple-
menting the boundary control law equation (96) in practice, the physical flow
variables, U and V, must be set such that the resulting stream function satisfies
equation (96). In terms of the physical flow variables U and ¥, the boundary control
law is

UG,y=+1,0=0, V(x,y=1,0)=0

My = —Li=rxy=—L0=— 20 (cy=—10= g o f(y=—1)
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In order to obtain homogeneous boundary conditions, we introduce the change of
variables

‘i’(x: Vs '!) é 'il')‘(x, y& ” - q(”w(x}f(y)
which substituted into equation (95) yields

P9  dg df B9 dgdw B dwdf
oo a2t e ety axoy: TV dx 4y

Tx dy*
ép  dw 63¢
d_} (ax f) s+a dx3f) )

) ¢ wd’f\ [ d*f
- _((ax4 * cix“f)+2(6 0¥ +q dx2 a? )*(I‘M e ))

The boundary conditions in terms of ¢ are
dx,y=+1,0=0

9 _

0

H

The streamwise component of shear at a single point at the lower wall is used as a
measurement, that is

z(f) = g;{.x,-,y =—0L1)

In terms of ¢, we have

2 2
0= 8 = =10 =S h iy~ L+ G2 = 1) (100)
A standard Fourier-Galerkin procedure is used to discretize the partial differential
equation in the streamwise direction, and a Chebyshev collocation method is used in

the wall-normal direction. Starting with the streamwise direction, we set

N
o= 2. an0P(x) (101)
=-N
N
wx)= Y w.P(x) (102)
n=-—N
where
R,(x) — einthfL)x (103)

The partial derivatives of ¢ and w with respect to x up to order four are

N
%f:(x:y: = Z Oty Y, D) P(x) _{x) - Z i b3(X) (104)

n=—N
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02 gl d*w il

@(X,y, t) - Z ar%an(ya t)Pn(x) W(X) = - ; OC,%WnP"(X) (105)
e d>w e 2

P ni=— ¥ din(n0Pm  Lrw=— ¥ aimnhm (105
0*¢ o

W(X’ y, 1) = n;Nanan(y, HP(x) d — (x) = Z_:Noc w,P,(x) (107)

where «, = 2nn/L. The Gelerkin method provides the set of equations

f{a3¢+ f+ 03¢ dqd22f+ (a¢ . dwa’zf)

oroy*  di dy Otdx> dt dx Oxdy? T ax dy?
RRIC 29
TR (ax T4 g f)+ D(a dx3f) (108)
a*¢ 0*¢ w dzf ot af
(ax f+2(620 np d )t t v | P =0

Inserting equations (101)—(102) and (104)—(107) into (108) yields
L N 3 2 d?
0 a, dqd*f ,0a, dgq 7f
LHZZ_:N{I:at@yZerdeW —o T gt Ol ay TtV

97

U ~ |

2f2. 4
-2 a 82+qd2 +a4+qd4w PP,

By the orthogonality of the P, functions, that is

L L L Lin=k
Pn(x)Pk(x)dx _ ein(Zn:/L)xe—ik(Zr:/L)xdx — ei(n—k)(Zn/L)xdx — ?
0 0 o 0, n# k

we get

o*a, dg dzf s0a,,
o102 " dt T M gy

i A2a d?
tqu:k“k"!" U(eck.'(ﬁ 3 +qd {rx;‘:w)

27

(ockzaz,c + g fogiw,) — Ul ia, + qfnck W) — I;e [ak a, + grjf'x;fwk (109)

L& 12f 4 1
_2( C;k+q£ fle'li’k)—]—‘( ‘fui_l_q:—:f'l.i-'k]: "—Q'E,fﬂfk: —M.-.,N
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For the measurement equation (100), the Galerkin method yields

N
d*a,

5
Jt}—k_ZNW(yz — LOB(x) +5 wlx)g (110)

An interesting property of the set of equations equation (109) is that the equations
are decoupled in terms of the wavenumber o This fact lets us study each wavenumber
individually. We now rewrite equation (109) in terms of af and af, where ¢F and o
are the real and imaginary parts of a,, respectively. Since real(a) = (a + a@)/2 and
imag(a) = (a — a)/2i, the equations for af and aj are obtained by

|
i{E+ E)=0
and
|
Zf(E'E)=

respectively. We have that

= 5 dq dlf zaﬁk dq 2_ 52dk de
E= oy T ar dy ™ e a0 U\ i 2+ 4 e,

2~

d“u, . ~ o, .
+ F(%m" + q fou i) + Ulegid, + q foid ivey,)

1), &Pa, A, \ a4 dYf_
Re[akaﬁqfam (oﬂk 2 +q dyzakwk ot +QE}EW&
so that
8%af  dg df ﬁa dq (%l  df
S M2 R Mk
(EJ’E) otoy T dr ay " % oy — g~ Ol w2+ o
.dZU '
d —— (ouai + gfouwi) + Uedal + g fowl) (111)
1 azaﬂ dz EJ"aR d

and

1 0*a dg d*f éa; o%al d?*
E{E'E} 6!6}’2 + - dt dyé “’J{ f(?fk f kwt + 0(“& a}; + qd {aﬂ-t’f)

dz
dy? (am + g fonni) — Uledad + g foiwf) (112)

1 0% df *a d*
--R—e[o:ﬁﬂ{+'¥fafﬂi—2(aka ;+qd 5 Ew’) “+qdy{ =0
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Next, we discretize the equation in the y-direction. For this, we use the Chebyshev
collocation method described in Section 2.7.3 on N+ 1 Chebyshev-Gauss-Labotto
p01nts as defined in equation (89). Applying the differentiation matrix %y, treating f
and U and their derivatives as known functions, yields

2@ dak @fm)az _dq

N dt Ear T e N e T fPwWR + U, Z2al + gf Pawl)

(2 I 0 Fror 3.1 0).,3. 1
L) UI(V )(‘xkak + quv )Oﬁkwi) — Up(oza, + quv )ka Wi)

+ RL [ozag + gf VotwR — 2(a2 DEalk + gf PaZwl) 4
+ Al + gl
g‘i;f o ‘i;‘t" ‘;—‘; 102w Zq £Pwl — U ZRak + gf Poowk)
+ UP(oaf + gt o) + Uy(odaf + gt a;wi) (114)

+ [ock ag + gf Qo wi — 2(0 ZRal + qf Podwl) + Dy*al + gf Pwl]

where af and al denote the vectors

ak = [a (o) ak(yl) af()’N)]T
ak = [ak()’o) ak(h) ce GJ{(J’N)]T
and
d’" T
(yo) 0 0 0
dmt
. 0 —_— 0 0
{rm — g () m=0,1,2...  (115)
0 0 . 0
d'"U
0 0 0 (J’N)
B dar dar Jam
f%n)= W(J’o) diﬁ(yl) f(yN):I m:()s]-aza

Above, (m) denotes the m™ order derivative with respect to y. It remains to implement
the boundary conditions. The Dirichlet boundary conditions are satisfied by simply
setting ay (o) = ai( ¥o) = af(yy) = al( yx) = 0, and omitting the differential equations
for these variables. Satisfying the Neumann boundary conditions is more involved.
We start by noticing that the Neumann boundary conditions imply that

N N
2 doja(y) =0, and 3 dy;a(y;) =0 (116)
j=0 j=0
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where the superscripts 7 and R are omitted since the following derivation is valid for
cither one. The dj, constants in equation (116) are the elements of % as defined in
equation (90). From equation (116), we can solve for a,( y,) and a(yn—4) to obtain

aly)=1{a

ayny-1)=1a

where we have defined

,:IT]=_|:d01 dam -1}]_l I:doz dos dmn 2)]
]; le NIN—1) sz dNS dmN 2)

and
a=[a(y:) alys) ... alyy-2)|"
Thus, we have that
H
a,=| Iy_3 |aL Fa (117)
1
['T

Inserting equations (117) into (113) (114), and keeping in mind that the equations
for a(ye), ay,), ayy-1), and a yy) should be omitted since these variables are
determined by the boundary conditions, we obtain

R~ RIVIAR = o RS, — 2RTS + . S )"

+ R(oy Oy 229, — (02 + 02 Uy )5, )a"
+WEREOME — (4, 0% + 0 Uy))g
18 RS~ 2324 + 190 — wER(D a1
R(% — of F)Fa! = — R(oq UGBS, — (0. U + o Uy )7, )a®
+ é_ R(Zy3,— 20529, + ot 7 )a’
— Wi R(oy U fQ — (0, U2 + 0 U ))g
+ %i R(oi;fR) — 2024 + £)g — wiR(F?P — o2

where R is a matrix that selects appropriate rows, defined as

R=[0n-3x2 Fn-3 Opn-_3x>2
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Assuming the measurement is real, we redefine z as the real part of equation (110),
so we get

M
2= D {cos(mx,)stDesa% —sin(ox;)s] D sa’} + g w(x;)g (118)

k=—-M

where s; is a vector of compatible dimension with a 1 at the j ™ position being the
only nonzero entry. It is clear that the measurement equation (118) is not decoupled
in terms of the wavenumber «,, but if we choose w appropriately, we may omit all
terms but one in equation (118). The reason for this will be discussed in the next
section. Finally we get the system on state space form

X = Ax + Bu (119)
z=Cx+ Du (120)
where
X =[a(y;) --. af(yy-2) aly2) ... ay(Yn-2) gl", u=gq
M7'AR Mtah M Nwiq, + wig,) —wRM b
A= M 4R M40 M (—wkq, +wlqy) |, B=| —wiM~'b
0 0 0 1

C= [cos (X )SETRS,  — sin(wx;)sv 952, ;w(xi):|, D=0

M = R(ZE — o}.9)7,
1
AR = 4T = = RS, — 2022 I, + ait 2.)

Ak = — Af = R UyZ3 I, — (o, U + o Uy)5)

o N . 1
q, = R UP — (0, UP + G U, qz = ER(an O —204Q + 1)
bZR(f%)—afﬁ\?))st[O(N—3)><2 In-s3 0(N—3)><2]

4.1.2. Classical control In the previous section we developed a state space representa-
tion of the discretized 2D linearized channel flow equations. Apart {rom the measure-
ment equation, the resulting system is decoupled in terms of the wave number. It
turns out that the system has one complex conjugate pair of eigenvalues in the right
half of the complex plane for k = 2. All other poles of the system are in the left half
of the complex plane (except for the pole at the origin, due to the boundary control
input configuration). Figure 7 shows poles and zeros for k£ =2 at Reynolds number
10000 and N =150 (i.e. 151 collocation points), and with the shear measurement
taken at x; =7, w(x) = sin(2nk/L)x), and L =4n. With this choice of w(x), (4,B) is
rendered uncontrollable for all wave numbers with k # 2. Therefore, the fact that the
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Figure 7. Poles ( x ) and zeros (O) for the system.

measurement does not decouple in terms of the wavenumber does not present a
problem, since the control will be unable to destabilize any pole of sub-systems with
k # 2. Figure 8 shows the Nyquist plot. The Nyquist stability criterion indicates that
when — 1/Ke(— 105,0) (approximately), no poles of the closed loop system lie in the
right half plane, which corresponds to K > 0.0095. This result is confirmed by Figure
9, which shows the real component of the system’s least stable eigenvalue as a
function of feedback gain K.

4.1.3. LOG control Assuming that equations (119)-(120) are subjected to additive
disturbances, w; and w,, that are uncorrelated Gaussian stochastic processes with
zero means and covariances W, and V] respectively, it is straight forward to apply
LQG control theory. For illustration, we select W=Q=1 and V=R=1, and
construct a standard LQG controller. Here Q is the penalty on the states, and R is
the penalty on the control input. Figure 10 shows the result in terms of the system
poles for the open-loop system, the state feedback closed-loop system, and the output
feedback closed-loop system. Clearly, the open-loop unstable poles are moved into
the left half of the complex plane by the control.

4.1.4. Implementation Although the state space model (119)—(120) takes the form of
a single-input-single-output (SISO) system, with mput « = ¢(z) and output z = du/
dy(x;, — 1, 1), the realization of the control system is distributed. This follows from
the fact that the actuation is blowing and suction of fluid distributed along the wall
as a cosine in x (dwldx, where w is a sine in x), whose amplitude is altered with a
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Figure 9. Real component of the least stable eigenvalue as a function of feedback gain K.
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Figure 10. LQG synthesis: system poles for the open-loop system (top), the state feedback
closed-loop system (middle), %and the output feedback closed-loop system (bottom).

speed given by the control input u = g(¢). The control law is centralized since the
control signal must reach all actuators on the wall. Centralized versus decentralized
control schemes are discussed in more detail in Section 5.

4.2. 3D channel flow

4.2.1. Reduced order model In Bewley and Liu (1998) linear control is applied to the
3D channel flow. In this case, shear measurements in two directions (U/Qy and dW/
dy) are taken at every point on both walls, and actuation is applied in the form of
wall transpiration on both walls. The point of departure is the linearized Navier-
Stokes equations for 3D channel flow (55)-(58), which may be rewritten in terms of
the wall-normal velocity component v, and the wall-normal vorticity component,
denoted o (vorticity is defined as dw = curf(W)). Taking the Laplacian of equation
(57) yields

a(w o2y 52v) a(az 2%y aﬂ’-) 20ev ol o
+U

o T oE Vo ettt +ar25x+29vé.£5'

b ’tZ ‘-q 32

1 fo% &% % _ % oty )2 %y
RTe(axi+5_yE+ﬁ4+2F” +28118 +2 a_)
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Taking the divergence of equations (56)—(58) vields

o v v\, o (i o ow\ 0o i o0 o
ot\éx dy oz ox\éx 0dy oz dy éx  ox®> oy 08z

LU0 (o o w2 fu av ow\ P (ou v ow
Re\dx*\dx 0Oy 0z) 0y*\ox 0oy 9z) oz2\ox 0oy Oz
and using continuity equation (55), we obtain
dUev o &*p 0%
2— - - 122
L (122)

Inserting equation (122) into (121) yields the equation for the wall-normal velocity
component, v, as

o[> v v . 0 (0% (?Zv o2v\  d*U ov
il T A N Sl 12
at(axz T T aﬁ) L (a 2t 5T g2 ) &~ ox (123)
(et ah at oty o &y
+E(ﬁ+64 64+26—8 -|-2a 252 -|-2a 26 )

The wall-normal component of vorticity is @ = du/dz — 0w/dx. Thus, taking the
partial derivative of equation (56) with respect to z and subtracting the partial
derivative of equation (58) with respect to x, yields

o dUd» - dw 1(@20) 02w a%o)
2

— T — 24
ot dy oz U@x TR\ ¥ oy* i (124)

The control is applied as an unsteady boundary condition on the wall-normal velocity
component v, and the no-slip condition in the x and z directions leads to homogeneous
Dirichlet boundary conditions for w, that is

wlx,y=+1,z,0)=0

By continuity, dv/dy = 0 at the wall, so equation (123) is also subject to homogeneous
Neumann boundary conditions. Expanding v and o as

v(x7 y’ Z7 t) — Z f}(kx: y’ kZ’ t)el((znkX/LX)x * (anZ/LZ) Z)
o, K

Q)(.X, V. z, t) - Z d)(kxay: kz7 t)ei((anx/Lx)x kL))
ke, kg

the Fourier-Galerkin method yields

af 2A+62” O 8213+ +62Umv
Fr e 37 ol v — ocxa2 jor, o2V 3

L f . &% , 629 2524 , 0%
Re (ocxv + 3 +a £y 57 + 20i0 9 — 20

dcd o, . . 1 2., D,
=——i V-V d+——| —a 0+ —a,d
ay Re

ray
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where
" - 2nk,
x Lx
oy - 2nk,
£~ Lx

As in Section 4.1 we discretize the wall-normal direction on N + | Chebyshev-Gauss-
Lobatto equation (89) points using the Chebyshev-collocation method. Applying the
differentiation matrix %y, treating U and its derivatives as known functions, yields

(B~ (02 +02) e = (O~ i, B + (12 + o2 9) + O
l (125)
o (G — Aoz + D)9 + (o + a2) 2 F)N,

da, =

.~ - - r - ] - -
i UWVio ¥, + (- U0, + o (2% — (02 + oc;")ﬁ))é‘w,, (126)

where
=0yo) Wy ... Wl

Oy =[yo) Ayy) ... d(yy)]"
and U is defined as in equation (115). Since the time derivative of #( y,) and #( yx)

occur in equations (125)(126), we let the time derivative of #( y,) and ¥ yy) be the
control input. The Neumann boundary conditions on v imply that

N N
Y doy)=0,and > dy;Hy;)=0 (127)
i=o i=o

Solving equation (127) for % y,) and W yy_,), yields

W) =% (128)
Wyn-1) =139 (129)

where we have defined
I:I‘{] - _ I:dﬂ‘l dl}{N— 1]]_ ! I:dOO dDZ i dﬁ[h’—Zl dﬂN:, ﬁnd.
l; le dN{N—l] dNO dh’z e dN(N—I} dN.N ’
V=[#yo) Wy} ... Wyy-2) W yw)
Thus, we get

H
T
H
Vo=| v 3

T
I;

T
Sn—3

-y
| o
Y
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and, defining &2 d(y,) &(yz) ... &(yy-1)],, the homogenecous Dirichlet
boundary conditions on « yields
0’
{,Ejﬂz ‘ﬁj\' -1 '{.";“"'é‘;{mﬁ?j (131)
0"

Inserting equations (130) and (131) into (125)-(126), omitting the equations for
#(»,), and ¥(yy_,) (since they are determined by the homogeneous Neumann
boundary conditions), and omitting the equations for @(y,) and &( yy) (since they
are zero due to the homogeneous Dirichlet boundary conditions), we get

% =M 1R1(l~]§$)(— io TR + io o 8) + Uo, + é (D% — 2095 + az,ﬂ))fﬁ
(132)
d(f) -1 rr(l); o -1 7(0); 1 2 A
dt - _'M2 RzUN)lazjvv+M2 Rz —— UN lOCx+E(9N—OCf) fmw (133)

where a = o2 + a2, and
M, = R(%§ — (0} + 02)5) 7,

M:‘:_Rz-—f;n

The measurement £ is the following
oi

Al sV = 15 E2) {
ay (OCX y o )

o
— = ——]_
ay(ax,y ) 0lzs 1)

f(OCx, Az, t) = ﬁ

ow
_64);-(ocxay - 1,0!2, t)

oW
= — {
| 5, (=~ Lo, i

which is obtained physically by measuring the shear in two directions (0U/éy and
8W1/0y) on the entire wall. From continuity equation (55) we have that

A

L A
fo i+~ + i =0
dy

which, along with & = ia, i — io W, yield
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So the measurement 1s

i

»xp 2 f) =
(0, 005, 1) wRe

— 0,81 19§tﬁui' + o8N+ |@11\'jmd’
UC_.KST@ E}ﬁ r-a' - CIZSTE‘F;f w®

T M2) & & T ~
— OSp 4 lgg\! jvv — O Sp I@Nﬁww

| o STORIN + oSG S0
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Finally, replacing the equations for ¥( y,) and # yy) in equation (132) by the control
input. we get the system on state space form

X = AX + Bu
z=Cx+ Du
where
x=[F" &', u=[pe) W(ynI"
A 0 A
A= [ " ] B= [ "]
Ay Asy 0
B Ct‘.xs;{;.f l-@%ﬁp azsIT\"+ l%‘ﬁm ]
i aﬁf@f&’f,, - sz{_OZ}lvfm
C= 2 2 T 2 T
R@(az + Dlx) — SN 4 19}\' }‘ﬁv — OxSn 41 wa
1,81 2.5, RCH R

Ay =R MR — i, F7 + (i + i 02).9) + Ui,

+

R

(= 2a? +a2)5 + (o2 + o2 VI,

3 D=04x2

(134)
(135)

~ 1
Ayy=—M;'"R,U\Vic, #,, Ay =M, 'RZ(— Ut + :RE{Q?'T — (e + ocf)ﬁ))ﬁm

o

1 0o ... 0 0]
0 0 ... 01

2x(N—1)
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Note that the rigorous derivation of the homogeneous Neumann boundary conditions
on v removes the spurious eigenvalues reported in Bewley and Liu (1998), and thus
removes the need for redesigning the matrix 4 to damp out these modes, which is
done in that reference.

4.2.2. Conirol strategies. A comparative study In Bewley and Liu (1998), two cases
are studied in detail: (1) Reynolds number 10000, o, = 2, and o, = 0; and (2) Reynolds
number 5000, o, =0, and o, =2.044. In case (1), where o, =0, the equations for w
decouples from the equation for v as well as from the control input, and the problem
becomes the same as that studied in the previous sections. Case (2) is a different
problem in that it is subcritical, which means that there are no unstable modes. The
control problem is nevertheless interesting because perturbations in laminar subcri-
tical flows may lead to transition to turbulence. Therefore, it is of interest to apply
control in order to delay, or maybe even prevent, transition to turbulence. The
particular case chosen here is the pair («,,«,) that gives the maximum transient
energy growth, as shown in Butler and Farrell (1992). The ‘worst-case’ transient
energy growth is defined as

£ — sup 120

xo [ Xo 2

The state space model developed in the previous section is subjected to state
disturbances, w,, and measurement noise, w,, such that it can be written

X=AX+BIW+BZU

y=0Cx+Dyw

where

w
w=|: 1} B,=[I 0], B,=B, C,=C, and D, =[0 of]
Wi

The performance variable, z, is defined as

z= C1x+D12u

172
a5} el
0 i

The system 1s now on the standard form needed for application of the 4, and #
control strategies. O, which shapes the dependence of the performance upon the
states, is chosen such that x*Qx is related to the energy of the flow perturbations,
which appears to be the best choice for delaying transition to turbulence (Bewley,
2001). In Bewley and Liu (1998), an extensive parametric study is carried out,
quantifying the performance of J,, 5, and proportional control strategies in terms
of the system norms || 7,,,/|2, | Txwl and | T, |l,, where T, is the transfer matrix
from the disturbance input w to the state x, and T, is the transfer matrix from the
disturbance input w to the control u. Thus, the norms are measures of the state
response to Gaussian disturbances, the state response to worst-case disturbances,

where
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and the control used in response to Gaussian disturbances, respectively. For case 1,
the results show that the proportional controllers are not nearly as effective as the
#, and # , controliers. The best 5, controller tested, is reported to perform better
than all proportional controllers tested with respect to the response of the state to
both white noise disturbances and worst case disturbances, and use significantly less
control energy than the proportional controllers,

Turning now to case (2), Figure 11 shows the eleven least stable poles for this
case. Clearly, they are all in the left half plane. Figure 12 shows the eigenvectors
corresponding to the eleven least stable eigenvalues. The eigenvectors appear pairwise
quite similar (except for the first eigenvector), implying that they are highly non-
orthogonal. The problem of large transient energy growth is connected with this non-
orthogonality, along with the magnitude of the corresponding eigenvalues. This can
be illustrated by the following example, involving the second order time invariant

system
-1 0
x=Ax= X
[ a —ll:I

with initial condition x(0) = x,. The eigenvalues of 4 are A, = —1 and 1, = —11,
that 1s, they are independent of @ by the triangular structure of A. The associated
normalized eigenvectors of 4 are v, =[1 a/ lO]T:'\/a_z! 100+1 and v,=[0 1],
respectively. The scalar product of the two cigenvectors is

.4
\_;'ﬂz + 100

ViV =

0002 | x
0.004 |-
0.006 | 4
0.008 | x

é 0.01
0012 | 4 -

0014 1

0.016 1

0.018 | - 1

ﬂ‘oz e -t | 1 5 = d i ] ! 1 I
1 2 3 4 5 6 7 8 9 10 i1

Figure 11. The eleven least stable eigenvalues in case 2. All eigenvalues are real.
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Figure 12. Eigenvectors corresponding to the eleven least stable cigenvalues.

which is maximized as a - oco. When a = 0 the eigenvectors are orthogonal, and the
energy decreases monotonically for all initial conditions, since the solution is simply

given by
et 0
x(1) = 0 et Xo

in this case. However, if @ = 100, for instance, the solution is given by

e’ 0
x() = 10(e™t —e~111) o 11t *o

so the (worst case) transient energy growth is

1x(0} 2 e 0
g(t)"__sllopm: lo(eft_efllt) e—llt

which is plotted in Figure 13. When this phenomenon occurs in a channel flow,
transition to turbulence is likely to occur, because the nonlinear terms in the Navier-
Stokes equation come into play. Thus, it is an important property of any control law
for equations (134)(133), that the transient energy growth is suppressed, which is
the main point in Bewley and Liu (1998) regarding case (2). The parametric study
carried out in Bewley and Liu (1998), indicate that the s#, and #,, controllers act
to make the set of eigenvectors more orthogonal. The maximum transient energy
growth of the system is reported to be reduced effectively.

=10(e ' —e ')

2
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Figure 14. Centralized control. Actuators and sensors are distributed over the shaded face.
All sensor data is sent to a central computer which calculates and issues control signals to all

actuators.

5. Spatial Invariance Yields Localized Control

In Cortelezzi and Speyer (1998), an implementation of the control system sketched
in Figure 6 for stabilizing the 2D channel flow was suggested. Figure 14 shows
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schematically the setup, involving arrays of sensors and actuators, and a central
computing unit. Data from the entire sensor array is fed into the computer, Fourier
transformed, and then fed to the control algorithm. The resulting control signal is
inverse Fourier transformed and output to the actuator array. The communication
needs are tremendous, and so is the computational load. It would be desirable to
have localized control, that 1s, actuation at a certain spatial position should depend
on sensing in a neighborhood of that location. Intuitively, flow variables far away
from a certain actuation point should be less important than flow variables that are
closer. And indeed, this is the case, as shown in Bamieh et al. (2000). The results are
based on the notion of spatial invariance. Loosely put, the system is spatially invariant
with respect to the spatial variable x if the system looks the same looking up and
down the x-axis, regardless of the point of reference. It is clear that the prototype
flows studied here have this property in the streamwise (and spanwise, in the 3D
case) direction. In this case, the optimal controllers derived above also are spatially
invariant. Morcover, the optimal state feedback u = Ky at a location x can be
written as

u(x, 1) = J ke(x — OY(Q)dC (136)

where the convolution kernel &, decays exponentially, that is
k()| < Me 1]

for some positive constants M and «. Similarly, an exponentially decaying convolution
kernel, k,, can be found for the estimation problem. Thus, one can approximate the
integral equation (136) to any desired degree of accuracy by truncating it at some
approprate ¢ > 0, to obtain

u(x, 1) = J ky(x — OY(Odl ~ _[ ky(x — Oy(O)dl

—-&

It follows that one can design decentralized controllers that are arbitrarily close to
optimal. For the linearized Navier-Stokes equations for 3D channel flow, these kernels
have been calculated in Hégberg and Bewley (2000). Implementation of the control
can be done in terms of a lattice of identical tiles incorporating sensors, actuators
and computation logic, as shown schematically in Figure 15. Each tile estimates the
state above itself, and the information is communicated to its neighbors. Based on
gathered information, each tile calculates its control. The choice of ¢ determines the
distance over which sensor information must be communicated.

6. Lyapunov Stability Approach

In this section, we use Lyapunov stability analysis to show stability of the
parabolic equilibrium profile equation (72), for 2D channel flow (Aamo ef al., 2001;
Balogh et al., 2001). The results extend easily to 3D channel flow and pipe flow as
well. The Navier-Stokes equations are nonlinear, and the only way we can assure
global stability of the feedback system is by nonlinear analysis. Note, though, that
this does not neccessarily mean that the stabilizing feedback control law has to be
nonlinear. Indeed, the result of the analysis below, turns out to give astonishingly
simple control laws, that are linear and completely decentralized, and that satisty
Lyapunov’s stability criterion (in L, norm) for nonlinear systems.

— b et 7
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Figure 15. Decentralized control. A lattice of identical tiles incorporating sensors and
actuators, and computation logic. Sensor information 1s communicated between neighboring
tiles, and each tile computes the control above itself.

6.1. 2D channel flow

6.1.1. Lyapunov stability analysis Boundary control laws for stabilization are sought
such that the kinetic energy of the system decays as a function of time. This is a
standard Lyapunov-based approach, in which the Lyapunov function is chosen as

E(w) = !IWIIEZ=J j @ + v?)dxdy (137)

The Lyapunov analysis is performed in the perturbation variables, since the parabolic
equilibrium profile is moved to the origin in these variables. Moving the equilibrium
point that is to be stabilized to the origin by means of a coordinate transformation
1s standard procedure in Lyapunov analysis. The time derivative of F(w) along the
trajectories of equations (74)75) is

™1
. ou  ov
E(w) = 2 . (tfa— + V—a;) dxdy

o =1

1 L 2y, a2 ]
_9 u( (‘:" +‘”)—u@—tf@—v3“—vd§ 6p)dxd (138)

dx?

v %y dv v v dp
2 — —U——y——-== )
+ J I ( (ﬁx y"') “ax Ve dy Ey) diedy

Integration by parts, noticing that
,0u 1 062)

Wox~2% ox M VT2V o
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and keeping in mind that all the variables are periodic in x, yields*

3 (o ov |t 2 ! ou ou v v
= [@”W} "X‘Rf f((ax) *( Hax) +(5) Jowo

{

_01
~1 L ~1 L
+ uzgdxdy—Z vud—qudy ZJ J‘pdxdy
v —140 y v—1d0
r1 rLLL
, 0 dv
+ v a—dxdy 2 Uavdxdy—f [l= _ydx
v —1J0 J—1J0 0
_tol

1 fL
J' J v fdxdy ZJv [vp]y_ldx%-ZJ‘ f 2—pdxdy (139)
N G A A O A av dU
= _RJ_ljo ((a) +(@) + a dxdy — 2 ud—dxdy
rLLL 1 fL
+ u? @—I—@ dxdy —2 p %—I—@ dxdy
v —14J0 ax ay —140 ax ay
rLorL L 1
+ v? %+@~; dxdy+% %u dx
J-1J0 ox 0y R 0 ay y=—1

> (LT (o 1 L
+ EJ. [(a; - Rp)v:| dx — J [(2* + v* )]y = - ydx
1] y==—1 0

Using continuity equation (73), we get

Etw}_ﬁ_ J—u 2+ o 2-;- v’ dxdy
—3w0 ﬁ}' ax dy )
dU > (%Faa T
-3 mr—d.\ dy + — L 2 ()
dy R dy )
g ° y=—1
% L
+%j |:(€_Ib _RP]I’:l dx—J. (2 + v* W])= — ydx
Ve y=—1 0

* Due to periodic boundary conditions in the streamwise direction:

L Ou " ou®) 44
L o —EL ox =7 l=0
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Following Balogh er al. (2001) Lemma 6.2 (also in Balogh et al. (1999) Lemma 3.2),
we set

¥
u(x, y, 1) = u(x, — l,f)+_|. g—;(x,?,t}d}‘ (141)
-1 ’

where the integration variable is denoted y for notational clearity. Squaring equation
(141) yields

¥y -1 ¥ 2
uztx,y,ﬂ=(u{x.- l.t)+f —(JC,'.LJWP) <2“2(x=—1-f)+2(j g—i(xs?ef}dl’)

-1 -1

By the Schwartz inequality,

¥ fu 2 Y [ ou 2
la_y(x' vOdy | <(y+1) (-’CJJ) dy (142)
1 1

so we have that
W x, 3, 0) < 2u¥(x, — 1.0+ 2(y + I)I (6‘; (x, v, !)) dv (143)
1

where we have set y = 1 in the integral. Therefore, we get

1 (L L
J f widxdy < 4j w?(x, — 1,0dxdy
~1do 0
1 fL 1 Lo 2
off Foon(] (s
¥y
—1Jdo 1
L L 1
=4'[ uz{x,—l,r}dtdy+2'[ (j (y+ l)dy) (144)
0 0 -1
1 du 1)2 )
+ Vs t d d
('[_l(ﬂy(x} ) | dy |dx
I 1 L (‘.H 2
=4 wx,—1,Ndxdy +4 T (x 1) dxdy
0 i do \ Y

An anologous derivation for (8v/dy) now gives

2 L
SN CR ) T cr——

(145)
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Inserting equation (145) into (140) we get

L

Ew) < — 2—1RE(W) + %J (u?(x, = 1,0 +v*(x, — 1, £))dx

0

M (LA \2 .\ 1 L ~

.[ ((i—u) + (T—l) )dxdy - EJ J m’du dxdy

ax ox dr

v =140 10D 5
™1, 1 L - 1

du 2 ov

|:a_11£|'i| i ﬁ!.\-l—kJ. [(E—Rp)l} d...".
Ja y==1 0 y=—1

L
- J [ + v )v]i= - dx

-1l

(146)

L
- Al 5

1 L d(’“] 1 L 1 L
—2J f uv(b}dxdys?.f J 2|u||v|dxdy<2j J (2 4+ v*)dxdy = 2E(w)
1

—-14J0 —14J0

(147)
we finally get
) 1(1 2 (" 2 (*lou |
g_; E B = 2 _ 2 = “~ i
E(w) Z(R 4)1"5(w)+RdO (w(x, —1,8) + v(x, l,t))dx-I—RJ‘0 l:ayul*_ldx
L 1 aV It L
2 = — — 2Pyl 14
+ JVO |:(R 3 )v_y:_ldx J; [(u” 4+ v*)v],- - dx (148)

Notice that for R < 1/4, E(w) decays exponentially with time even in the uncontrolled
case (u(x, +1,7) =v(x, +1,£)=0). In other words, the fixed point (U, 7) is globally
exponentially stable (in L,) in this case, and the goal of applying boundary control
is to enhance stability. The four last terms in equation (148) are evaluated on the
boundary, and are the means by which boundary control laws are designed.

Below, two control laws are presented: the first uses wall-tangential actuation;
and the second uses wall-normal actuation.

6.1.2. Wall-tangential distributed actuation The following boundary control was
suggested in Balogh ez al. (2001):

ulx,— 1,0 = ku%(x, —1,0,u(x,1,0)=— ku%(x, 1, 1) (149)
vix,—1,)=v(x,1,1)=0 (150)
Inserting equations (149)—(150) into (148) gives
E(w)<—1 l—4 E(w)—2 l—l [ 2(x, —1, f)dx (151)
S TOo\R R\E, T

Thus, for R < 1/4 and k,€[0,1], E(w) decays exponentially with time.

— =

I

al



Stabilization of Fluid Flows in Channels and Pipes 209

6.1.3. Wall-normal distributed actuation Actuation normal to the wall is another
strategy of active interest. The inequality equation (148) also suggests a control
law structure for wall-normal control (Aamo et al., 2001). Setting w(x, —1,1) =
u(x,1,1) =0, (év/dy) is zero at the wall by continuity equation (73), so we have

L L L
E(w)a—%(;—x;)f(wnéj‘ V(x, - l,:)dx—Zj v} ldx—j. 1=y
0 0 1]
(152)

Now, by imposing v(x, —1,1) = v(x, 1, 1), the last term in equation (152) vanishes.
Thus, we propose the following control law

wx,—1,0)=ulx,1,0)=0 (153)
vix, =L, =v(x, 1, 1) =k (p(x, 1,1) — p(x, — 1, 1)) (154)
[nserting equations (153)-(154) into (152) gives
Ewy< —(1_a)mw—of L _ ! ’ 2(x, — 1, Hdx (155)
AV YTk TR) T

Thus, for R < 1/4 and k,€[0, R], E(w) decays exponentially with time. Furthermore,
note that equation (154) ensures that the net mass flux through the walls be zero.

6.1.4. Implementation In order to implement the above controllers we have to express
them in terms of the actual flow variables, U, V and P. For the wall-tangential case,
we get

ouU dU
U(JC, —1, f} = k,,(g;(x, —1. !') - ?y-{x, — l, f))

(156)

U du

U(x, 1, f) = — ku(@{x, 1, t)y— d—y(x, 1, !))
Mx,—1,0)=V(x,1,1)=0 (157)
and for the wall-normal case we get

Ux,—-1L,1)=Ux,L,1=0 (158)
Vix, = 1,0 = Vix,1.1) =k (P(x.1,0) — P(x, — 1, 1)) (159)

It is interesting to notice that the wall-normal control is independent of the physical
parameters of the flow. This is an important property, since the physical parameters
of any real flow are subject to inaccuracy. In contrast, (dU/dy)(x, +1,7) must be
known for wall-tangential control.

It is also worth noting that all the above control laws are of the Jurdjevic-Quinn
(Jurdjevic and Quinn, 1978) type (with respect to the Lyapunov function E(w)). This
endows these control laws with inverse optimality with respect to a meaningful cost
functional (which is in these cases complicated to write).

6.1.5. Numerical demonstration The theoretical results of Section 6.1.1 are only valid
for Reynolds numbers less than 1/4, for which the parabolic equilibrium profile is
globally exponentially stable in the uncontrolled case. Thus, the analysis only tells us
that the proposed control laws maintain stability, and not neccessarily enhance it. In
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fact, for wall-normal control, simulations at R =0.1 show that for k,=0.1, E(w)
converges more slowly to 0 than in the uncontrolled case, whereas for k,= — 0.1,
stability is enhanced. Although this result was unexpected, it does not contradict the
theoretical results.

Being valid for small Reynolds numbers only, the theoretical results are of limited
practical value. However, they do suggest controller structures worth testing on flows
having higher Reynolds numbers. In Balogh et al. (2001), results from numerical
simulations with wall-tangential control were presented that show stabilization of
channel flow at R = 15000. Here, we do a comparison of the performance of the two
control laws for flows at R = 7500 and L = 4x.

The simulations are performed using a hybrid Fourier pseudospectral-finite
difference discretization and the fractional step technique based on a hybrid Runge-
Kutta/Crank-Nicolson time discretization using the numerical method of Bewley and
Moin (1999). This method is particularly well suited even for the cases with wall-
normal actuation because of its implicit treatment of the wall-normal convective
terms. The wall-paralel direction is discretized using 128 Fourier-modes, while the
wall-normal direction is discretized using energy-conserving central finite differences
on a stretched staggered grid with 100 gridpoints. The gridpoints have hyperbolic
tangent distribution in the wall-normal direction in order to adequately resolve the
high-shear regions near the walls. A fixed flow-rate formulation is used, rather than
fixed average pressure gradient, since observations suggest that the approach to
equilibrium is faster in this case (Jiménez, 1990). The difference between the two
formulations is discussed briefly in Rozhdestvensky and Simakin (1984). The time
step is in the range 0.05-0.07 for all simulations. In addition to reporting the time
evolution of the energy, E(w), we also consider the (instantaneous) control effort and
drag force as measures of performance. The control effort is defined as

C(w) = /J (Iw(x, —1,8)]% +|w(x, 1,0)|*)dx (160)

and the drag force as

D(w)=%‘[0 (g](x,—l,r)—%—;](x,l,z))dx (161)

(Notice that equation (161) is really the mean wall shear, which is related to the drag
force by the factor wuL). For selected time instants, vorticity maps are also provided.
The vorticity, o, is defined using the actual flow variables (rather than the perturbation
variables) as

ov oU
w(xayzt):a(-x,ys t)_@(xaﬁf) (162)

A total of six simulations are performed: wall-tangential control with
k,€[0.05,0.1,0.2]; and wall-normal control with k,e[—0.125, —0.08, —0.05]. The
parabolic equilibrium profile is unstable for R =7500, so infinitesimal disturbances
will grow, but the flow eventually reaches a statistically steady state, which we call
fully established flow. For all simulations, the fully established flow, for which
E(w) ~ 1.3, is chosen as the initial data. Figure 16 shows a vorticity map for the fully
established (uncontrolled) flow. It is similar to vorticity maps presented in Jiménez
(1990), and clearly shows the ejection of vorticity from the walls into the core of the
channel as described in Jiménez (1990).

th
th

n
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Figure 16.  Vorticity map for the fully established 2D channel flow (uncontrolled).

Figure 17 compares wall-tangential and wall-normal control. It is clear that
stabilization is obtained for both controllers, in terms of the energy E(w). Figure 17
shows that FE(w) decays faster for wall-normal control, and at much less control effort
(notice the different scales for C(w) for the two cases in Figure 17). The ratio of the
peak kinetic energy of the control flow (wall-normal), versus the perturbation kinetic
energy in the uncontrolled case (drained out by the control), C(w)?/E(w), is less than
0.25%. Also, reduction of drag is more efficient in the wall-normal control case.*

Figure 18 shows vorticity maps at three different time instances for wall-normal
control with k,= —0.125. The removal of vortical structures is evident already at
1=30 (top graph), and at =120 (bottom graph) the flow is nearly uniform.
Figure 19 shows the pressure field immediately afier onset of wall-normal control
(k, = —0.125). Regions of low pressure coincide with regions of circulation cells, as
the velocity vectors in the intermediate zoom show. In the most detailed zoom, we
see that the controller applies suction in this region.

6.2. 3D channel flow

It is recognized that channel flow instability mechanisms are inherently 3D.
Efforts that study the stabilization problem only in 2D are thus inconclusive about
physical flows, for which 3D effects are quite significant. However, the ‘model
problem’ of 2D channel flow stabilization is a useful testbed for techniques that can
eventually be extended to 3D flows. The Lyapunov stability analysis presented in the
previous section can be extended to the 3D channel flow in a straight forward
manner, and similar boundary control laws can be derived. Balogh (private commun-
ication) reports that, in numerical simulations, the very simple, and fully decentralized
boundary control law

o au o0
U(l,-l,.,,f)=k( (I,—l..z.,f)— ﬂ;(-]))

U U
Ux,1,z,1)= —k(gix, 1,z,10) “a(l))

Nx,—1,z,0)=Wx1,2,0)=0
Wix,—1.z,0) = W(x,1,2,0) =0

*It is interesting to note (see Figure 17) that, when the control is applied to the 2D flow,
a transient ensues in which the drag dips below the laminar level and then asymptotes towards
the laminar state. This transient, however, is dependent on the initial flow state being that of
the fully established 2D flow, which has a drag which is significantly higher than laminar.
Thus, this transient result does not disprove the conjecture stated in Bewley (2001), as discussed
in Scction 7.
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Figure 17. Energy E(w) (top row), control effort C(w), and drag D(w) (bottom row), as
functions of time for wall-tangential actuation (left column) and wall-normal actuation (right ar
columm). pl
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with k > 0, relaminarizes a turbulent 3D channel flow at Re = 4000. Figure 20 shows

the perturbation energy as a function of time. The perturbation energy is in this case
Lo us
E(w)= J j j ? 4+ v? + w)dxdydz ar
0 v-1J0 0
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Figure 18. Vorticity maps for wall-normal actuation at 1 = 30 (top figure), t = 60, and = 120
(bottom figure). The feedback gain is k, = —0.125.

-— _—-"/

Figure 19. Pressure (perturbation only, i.e. p) immediately after onset of wall-normal
actuation. Zoom shows velocity vectors in a region with low pressure.

and the channel dimensions were L, = 67 and L, = 3n. The plots in Figure 21 show
places where the discriminant* has values larger than 0.9 at # =4000, indicating
locations of vortical structures. It is interesting to notice that the perturbation energy
is still large at this point in time (see Figure 20), but the control has clearly influenced
the vortical structures in the flow. Figure 22 shows the spanwise vorticity at £ = 5000.

*The discriminant of the velocity gradient tensor is a scalar quantity that is commonly
used in visualizations to pinpoint vortex-type motions in the flow. The following definition
of the discrimant is taken from Bewley et al. (2000): D =(27/4)R* — Q*, where Q and R
are the second and third invariants of the velocity gradient tensor A, defined by
Q =} {trace(A)’ —race(A*)}, and R = — det(A). respectively.
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Figure 20. Perturbation energy (square root of) as a function of time for uncontrolled and
%controlled 3D channel flow at Re = 4000.

Figure 23 shows drag as a function of time. Drag is reduced to below laminar level
(which is 4) almost instantly, and then gradually approaches the laminar level. This
is the same result as obtained in the 2D case. Notice that drag reduction is not
explicitly the objective of the control, stabilization of the parabolic equilibrium profile
is. Reduction of drag to laminar level is therefore expected in the limit as - oo, but
the striking result of immediate drag reduction is obtained!

6.3. 3D pipe flow
6.3.1. Lyapunov stability analysis

The Lyapunov analysis that was developed for 2D channel flow, can be modified
to apply for the 3D pipe flow as well. Considering the following Lyapunov function
candidate

L *2r [
E(w)%ﬂwnmz:éj 'f j (02 + v + v2)rdrd0ds
£ &

“Jo da

which is simply the kinetic energy of the flow, its time derivative along trajectories of
equations (65)—(67) 18
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Figure21. Places where the discriminant has values larger than 0.9 at r = 4000, for uncontrolled
(upper) and controlled (lower) 3D channel flow at Re = 4000.

2 2 L 2r
: _ _ - 2, 2
E(w) < Z(RE l)E{w}+R€L J; [v? +v3 + v2), -, dOdz

L "2n
—;- [, - 1 ddd= — f J. (v, pl, - dOdz — J- j [v,vil,-1dbdz

JO JO

1 ("2
5 [v Vv, ], -1 d0dz + Rf’jJ. [ ] dbdz
Jo
| e |
dbdz + — Vo dfdz
ReH[ wl, 1]

In equation (163), all but the first term on the right hand side of the inequality are
evaluated on the boundary. These are the terms by which boundary control laws are
designed. Below, a pressure-based control law is presented.

(163)

6.3.2. Boundary control We propose the following control law
vA(1,0,z,0) =k(p(1,0,z,1) — p(1,0 + =, z, 1))
ve(1.0,z,0) =0 (164)
v(1,0,z,1)=0
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Figure 22. Spanwise vorticity at t = 5000 for uncontrolled (upper) and controlled (lower) 3D
channel flow at Re =4000.

Inserting into equation (163), yields

L "2z
Ew) < -2 ;e—l E(w)+1;eJ‘0 J; v2(1,0,z, 0)dbdz
(165)
1 L 2r L 2z
—3 v2(1,0,z, H)d0dz — v,(1,0,z,0)p(1,0, z, H)dbd=z

(VY RY] 0 JO
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Figure 23. Drag as a function of time for uncontrolied and controlled 3D channel flow at
Re = 4000.

For n odd, we get

Zn 0 T
J‘ v/(1,6,z 0db f v:'(l,ﬁ,z,r)d9+_|. (1,6, z, 1)db

o o

0 T
=-J i, 6,z,r}d9+j (1,0, z, 1)do

0
and by a change of variables in the first integral (6* = — ), we get
2Zn " n
.[ vr(1,0,z)d0 = —j vr (1, 0%, z, )d6* + I vi(1,06,z,0)d6 =0
[ 0 1]
which proves that the net mass flow through the wall is zero, and that
2n
.[ [v'],-1d0=0
0
by setting n =1 and n = 3, respectively. Since

2 0
j. v(l,0,z, 0)p(l.0,z, t)dﬁ:j vi(1,6,z,0)p(1, 8, z, )db

]

+ j v(l,0,z,0)p(1,0,z, 1)d0

0
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0
= — J v, (1, — 0%, z, OHp(l, — 6%, z, H)dO*

rfr
+ | v(L,6,z,0)p(1,6,z, t)do
v 0
*r
= - vr(lr 9*: Z, t)p(lv _9*’ Z, t)de*

vO

4 J. vl.8.z,0)p(1, 0,z 0)db
{

)

= J v(1,0,z,0(p(1,0,z,8) —p(l, —0, z, 1))d0

0

_1 4 , B 1 2z 5
_kf v, (1,9,z,z)d9_2kf v,2(1,0, 2, H)do

o 0

we obtain

] 1 L 2n
E(w)<—2(é—l)E(w)—(2k—};e)JL v2(1,0,z,0d0dz  (166)

]

Thus, the equilibrium profile is globally exponentially stable in L, for sufficiently
small Re and for appropriately selected feedback gain k. Note that the control law is
decentralized and has a symmetrical structure similar to that of the pressure-based
control designed for the 2D channel flow case (see equations (153)—(154)).

7. Drag Reduction Below Laminar Flow

7.1. Wall-normal actuation

The simple pressure-based feedback control strategy for wall-transpiration control
of incompressible unsteady 2D channel flow proposed in Aamo et al. (2001), leads
to flow transients with instantaneous drag far lower than that of the corresponding
laminar flow (see lower right graph in Figure 17). This touches at the common belief
that the laminar flow constitutes a fundamental limit to the drag reduction that is
possible to obtain, which is stated in Bewley (2001) as the following conjecture

Conjecture 1 The lowest sustainable drag of an incompressible constant mass-flux
channel flow in either 2D or 3D, when controlled via a distribution of zero-net mass-
flux blowing Isuction over the channel walls, is exactly that of the laminar flow.

We denote the drag of the laminar flow D;, and by sustainable drag, (denoted
D), we mean the time average (denoted D(¢)) of the instatancous drag (denoted
D(1)) as the averaging time 7" approaches infinity, i.e.,

T
D, £ lim D(T) £ lim lTj D(t)dt
T— oo
0

T—w
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Figure 24. History of drag. Simulation initiated from fully established unsteady 2D flow at
Re =7500. Stabilizing pressure-based feedback control strategy with k = — 0.125 turned on at
t=0.

u.t)‘z T T T
0.01
=2 0 i
o001} . ]
. i Rt
0.02, 2 1 0 1 2 3
- wold/on x 107

Figure 25. Scatterplot of ¢ versus (—udUldn) at 1 = 5.

with the instantaneous drag given as in equation (161), multiplied by the factor pul.
In Bewley (2001a) the mechanisms that initiate the D(7) < D, transient is investigated,
and an attempt at sustaining the drag below that of laminar flow is made. A
simulation of a constant mass-flux 2D channel flow at Re = 7500, using a box length
60 times the channel half width serves as an illustration. The flow at # =0~ in Figure
24, a fully established unstcady flow in a 2D channel (sce, e.g. Jiménez (1990)), has
extensive regions of backflow near the walls. This appears to be the key to initiating
a D(1) < Dy transient. A scatter plot of the local control ¢ as a function of the local
value of (— udUlén) at =5 (shortly after the control is turned on) is shown in
Figure 25, demonstrating correlation of blowing with local regions of positive drag
and suction with local regions of negative drag using the present strategy (76% of
the samples are in the first and third quadrants). By generally applying suction at
the walls in regions of negative drag, and applying blowing in regions of large positive
drag, the negative drag regions are intensified (locally, more negative drag) and the
high positive drag regions are moderated (locally, less positive drag), as illustrated in
Figure 26. In terms of reducing the total instantaneous drag D(r) integrated over the
walls at time ¢ = 5, both effects are beneficial, and thus the control application results,
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Figure 26. Win-Win mechanism at ¢ = 5: intensification of local regions of negative drag by

suction in low pressure regions and moderation of positive drag by blowing in high pressure

regions. Shown are contours of pressure in 1/6 of the computational domain (top) and selected
velocity profiles (bottom).

for a brief amount of time, in a ‘win-win’ situation, facilitating a drastic transient
reduction in skin-friction drag to well below laminar levels. Unfortunately, the wall
suction quickly acts to remove the backflow from the flow domain entirely, after
which the instantaneous drag D(f) asymptotes back to the laminar level, D,.

A metric which quantifies the degree of backflow present at any instant in a

particular flow is given by
1 lp
b,=|— 4
! |:A J;Z_ | Ul dﬂ}

where Q is the subset of the channe! flow domain Q which is characterized by
regions of flow with negative streamwise velocity, i.e. Q™ = {Q(x, »}| Ulx, y) <0}, and
A is the volume of the entire channel domain Q. For the simulation depicted in
Figures 24-26, plots of the history of b, and b, are shown in Figure 27. Note that,
by both measures, the backflow is quickly eliminated after the control is initiated;
flow visualizations such as Figure 26 demonstrate clearly that the backflowing fluid
in Q~ is simply removed from the channel by the control suction.

As a ‘standard’ problem to test the utility of a given control strategy for reducing
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Figure 27. Elimination of backflow after control is turned on, as measured by b, () and b,(1).
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Table 1. Forcing schedules explored during parametric study: 7., indicates the period of

the cycle used, 7; denotes the duration of the first segment of the cycle, T; denotes the duration

of the second segment, k; denotes the feedback coefficient used during the first segment, and
k, denotes the feedback coefficient during the second segment

Case Tyere T 1, ky k,
1 3000 2600 400 0 0.125
2 3000 2700 300 0 0.125
3 3000 2800 200 0 0.125
4 3000 2900 100 0 0.125
5 3000 2950 50 0 0.125
6 3000 2000 1000 0 0.031
7 3000 2500 500 0 0.031
8 3000 2800 200 0 0.031
9 2000 1600 400 0 0.125
10 2000 1700 300 0 0.125
11 2000 1800 200 0 0.125
12 2000 1900 100 0 0.125
13 2000 1950 50 0 0.125
14 1000 250 750 —0.031 0.031
15 1000 350 650 —0.031 0.031
16

1000 500 500 —0.031 0.031

time-averaged drag to below laminar levels, a series of controlled 2D channel flow
simulations at Re = 7500 were initialized from small (random) perturbations to a
laminar flow profile. The control producing the D(t) < D, transients was cycled off
and on periodically, with the ‘running average’ of the drag, D(r) = [, D(¢)dt’, com-
puted as the flow evolved to quantify progress towards sustained drag reduction. A
large variety of different periods, duty cycles, and control amplitudes were explored;
Table I summarizes specific cases examined in detail.

Cases -5 reported in Table 1 were executed at a cycle time of Ty =3000 for a
variety of duty cycles with relatively strong stabilizing feedback applied during the
second segment of each cycle. Cases 6-8 were similar, but applied relatively weak
stabilizing feedback. Cases 9-13 returned to the relatively strong stabilizing feedback,
but investigated a shorter cycle time. Finally, cases 14-16 were executed with
destabilizing feedback applied during the first segment of each cycle, and stabilizing
feedback applied during the second segment of each cycle; this was done to accelerate
the formation of the backflow regions. Histories of the L, energy, the instantaneous
and ‘running time-averaged’ drag D(f) and D(r), and the backflow measures b, and
b, are illustrated in Figure 28 for four representative cases.

It was found in cases 1, 2, 9, 10, and 14, with 7, relatively large, that the
stabilization provided by the control during the second segment of each cycle was
sufficient to stabilize the entire channel flow back to the parabolic profile; to illustrate,
case 14 is plotted in Figure 28(c). These cases imply that 7, must be a sufficiently
small fraction of 7, in order to allow a quasi-periodic behavior to establish.

It was found in cases 5, 8, 13, and 16, with 7, relatively small, that the uncontrolled
(or, in case 16, destabilized) evolution of the flow during the first segment of each
cycle was sufficient to drive the time-averaged drag to heightened levels.

A tradeoff is thus identified: decrease 7, and there will be more backflow to
exploit during each cycle (so the transient will be more effective at reducing drag),
but by allowing the 2D unsteady flow to evolve for a longer time uncontrolled or
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destabilized, the mean drag is pulled up higher above the laminar level. Intermediate
values of T, were sought for a variety of cycle times and forcing amplitudes over a
parametric study of several simulations, some of which are reported here. Over all
these simulations, this tradeoff was cvident, and not once did the running average,
D(1), dip below the laminar value when the simulations were initiated from the
perturbed laminar state. These results indicate that it is always necessary to pay a
more expensive price (in terms of the time-averaged drag) to obtain the backflow
than the benefit (in terms of the time-averaged drag) that can be obtained by applying
suction to the backflow regions. Therefore, it appears that the parabolic equilibrium
profile represents a fundamental limit to the drag reduction possible when applying
control based on wall transpiration with zero-net mass flow.

7.2. Wall-tangential actuation

The objective of the control strategies above has been to stabilize the parabolic
equilibrium profile. Although not explicitly stated in the objective, drag reduction is
obtained indirectly using this strategy. For wall normal actuation, with zero-net mass
flow, the objective of stabilizing the parabolic profile is equivalent to minimizing
drag, due to the conjecture stated in Section 7.1. However, it is clear that drag can
be reduced further if actuation is directed in the streamwise direction, and in
particular if it is allowed a steady-state offset. This calls for new actuators that allow
slip boundary conditions at rigid walls. Advancements in this direction based on
conveyer belts as actuators, allowing slip boundary conditions, are currently being
persued (Bewley, 20015).

8. Concluding Remarks

The field of flow control has picked up pace over the past decade or so, on the
promise of real-time distributed control on turbulent scales being realizable in the
near future. This promise is due to the micromachining technology that emerged n
the 1980s, and developed at an amazing speed through the 1990s. In lab experiments,
so called micro-electro-mechanical systems (MEMS) that incorporate the entire
detection-decision-actuation process on a single chip, have been batch processed in
large numbers and assembled into flexible skins for gluing onto body-fluid interfaces
for drag reduction purposes.

Control of fluid flows span a wide variety of specialities. In Part T of this tutorial,
we have focused on the problem of reducing drag in channel and pipe flows by
stabilizing the parabolic equilibrium profile using boundary feedback control. The
control strategies used for this problem include classical control, based on the Nyquist
criteria, and various optimal control techniques (#,,#,,), as well as applications of
Lyapunov stability theory. The lincar approaches are clearly restrictive in that they
only provide local stability results. The nonlinear approaches give global stability
results, but impose serious restrictions on the Reynolds number. Thus, the problem of
stabilizing the parabolic equilibrium profile of channel and pipe flows in general,
remains open. Nevertheless, stabilization is achieved for large Reynolds numbers in
simulations.
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