“Exponential Stabilization of an Underactuated Surface Vessel”

Authors: Kristin Y. Pettersen and Olav Egeland,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1997, Vol 18, No 3, pp. 239-248.

Keywords: Nonlinear control, underactuated vehicles, continuous time-varying feedback

Abstract: The paper shows that a large class of underactuated vehicles cannot be asymptotically stabilized by either continuous or discontinuous state feedback. Furthermore, stabilization of an underactuated surface vessel is considered. Controllability properties of the surface vessels is presented, and a continuous periodic time-varying feedback law is proposed. It is shown that this feedback law exponentially stabilizes the surface vessel to the origin, and this is illustrated by simulations.

PDF PDF (1420 Kb)        DOI: 10.4173/mic.1997.3.3

DOI forward links to this article:
[1] Bing Han, Guo-liang Zhao and Hao Meng (2004), doi:10.1007/BF02894336
[2] A. Behal, D.M. Dawson, W.E. Dixon and Y. Fang (2002), doi:10.1109/9.989148
[3] Robert T. M'Closkey (1997), doi:10.1016/S0167-6911(97)00070-4
[4] A. Behal, D.M. Dawson, W.E. Dixon and Y. Fang (2000), doi:10.1109/CDC.2000.914113
[5] Dongkyoung Chwa (2011), doi:10.1109/TCST.2010.2090526
[6] A. Baviskar, M. Feemster, D. Dawson and Bin Xian (2005), doi:10.1109/ACC.2005.1470659
[7] Chen Yimei (2012), doi:10.1109/ICSSEM.2012.6340810
[8] Chang-Zhong Pan, Xu-Zhi Lai, Simon X. Yang and Min Wu (2013), doi:10.1109/CCDC.2013.6561430
[9] Dongkyoung Chwa (2007), doi:10.1109/MED.2007.4433805
[10] A. Behal, D.M. Dawson, B. Xian and P. Setlur (2001), doi:10.1109/CCA.2001.973940
[11] Yuchan Chen and Baoli Ma (2014), doi:10.1109/WCICA.2014.7052727
[12] Pascal Morin, Jean-Baptiste Pomet and Claude Samson (1998), doi:10.1016/S1474-6670(17)40397-1
[13] Zhijian Sun, Guoqing Zhang, Bowen Yi and Weidong Zhang (2017), doi:10.1016/j.oceaneng.2017.07.010
[14] Zhijian Sun, Guoqing Zhang, Jian Yang and Weidong Zhang (2017), doi:10.1007/s11071-017-3937-8
[15] (2001), doi:10.1007/BFb0113123
[1] BYRNES, C. ISIDORI, A. (1991). On the attitude stabilization of rigid space-craft, Automatica, 27, 87-95 doi:10.1016/0005-1098(91)90008-P
[2] CORON, J.-M. (1995). On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law, SIAM J. of Control and Optimization, 3.3, 804-833 doi:10.1137/S0363012992240497
[3] CORON, J.-M. ROSIER, L. (1994). A relation between continuous time-varying and discontinuous feedback stabilization, J. of Math. Syst. Estimation, and Control, .1, 67-84.
[4] LEONARD, N.E. (1995). Periodic forcing, dynamics and control of underactuated spacecraft and underwater vehicles, Proc. 34th IEEE Conf on Decision and Control, New Orleans, LA, pp. 3980-3985.
[5] M´CLOSKEY, R.T. MURRAY, R.M. (1993). Nonholonomic systems and exponential convergence: some analysis tools, Proc. 32nd IEEE Conf. on Decision and Control, San Antonio, Texas, pp. 943-948.
[6] MORIN, P. SAMSON, C. (1995). Time-varying exponential stabilization of the attitude of a rigid spacecraft with two controls, Proc. 34th IEEE Conf on Decision and Control, New Orleans, LA, pp. 3988-3993.
[7] MORIN, P., SAMSON, C., POMET, J.-B. JIANG, Z.-P. (1995). Time-varying feedback stabilization of the attitude of a rigid spacecraft with two controls, Syst. and Control Letters, 25(5), 375-385 doi:10.1016/0167-6911(94)00095-D
[8] NIJMEIJER, H. VAN DER SCHAFT, A. (1990). Nonlinear Dynamical Control Systems, Springer-Verlag, New York.
[9] SUSSMANN, H. (1987). A general theorem on local controllability, SIAM J. of Control and Optimization, 2.1, 158-194 doi:10.1137/0325011
[10] ZABCZYK, J. (1989). Some comments on stabilizability, Appl. Math. and Optimization, 19, 1-9 doi:10.1007/BF01448189

  title={{Exponential Stabilization of an Underactuated Surface Vessel}},
  author={Pettersen, Kristin Y. and Egeland, Olav},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}