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Exponential Stabilization of an Underactuated Surface Vessel
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The paper shows that a large class of underactuated vehicles cannot be
asymptotically stabilized by either continuous or discontinuous state feedback.
Furthermore, stabilization of an underactuated surface vessel is considered.
Controllability properties of the surface vessels is presented, and a continuous
periodic time-varying feedback law is proposed. It is shown that this feedback law
exponentially stabilizes the surface vessel to the origin, and this is illustrated by
simulations.

1. Introduction

Control of underactuated vehicles, i.e. vehicles where the control vector has lower
dimension than the configuration vector, is a field of increasing interest. It has been
studied by e.g. Byrnes and Isidori (1991) who gave results on stabilizability of a class
of underactuated vehicles. Leonard (1995) shows how open loop small-amplitude
periodic time-varying forcing can be used to control both underactuated spacecraft and
underwater vehicles. Morin, Samson, Pomet and Jiang (1995) present smooth
time-varying feedback laws that asymptotically stabilize an underactuated spacecraft.
Both M’Closkey and Murray (1993) and Morin and Samson (1995) present important
tools for analysis and exponential stabilization of underactuated vehicles.

Byrnes and Isidori (1991) show that underactuated vehicles with zero gravitational
and buoyant field cannot be asymptotically stabilized by C' state feedback. We here
extend their result by considering underactuated vehicles with a more general
gravitational and buoyant field. We show that the vehicles cannot be asymptotically
stabilized by either continuous or discontinuous state feedback.

Dynamic positioning of surface vessels is required e.g. in many offshore oil field
operations such as drilling, pipe-laying and diving support. Critical to the success of
adynamically positioned surface vessel is its capability for accurate and reliable control,
subject to environmental disturbances as well as to configuration related changes, such
as a reduced number of available control inputs. This reduction may be the result of
an actuator failure or a deliberate decision to limit the number of actuators due to e.g.
cost and weight considerations.

In this paper we consider control of a surface vessel without side thruster. The
problem considered is to find a control law that asymptotically stabilizes the surface
vessel to the origin. As open loop control does not compensate for disturbances and
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Figure 1. Motion of the surface vessel.

model errors, we seek a feedback law. A question to be answered is whether the surface
can be asymptotically stabilized with only two controls.

The stabilizability result gives that the underactuated surface vessel cannot be
asymptotically stabilized by either continuous or discontinuous state feedback. We
show however that the surface vessel still is locally strongly accessible and small
time locally controllable. Furthermore we show that by introducing explicit
time-dependence in the controller, the surface vessel can be asymptotically stabilized.

However it is not trivial to find such a feedback law. One approach may be the use
of the analysis tools of M’Closkey and Murray (1993) and Morin and Samson (1995).
For these tools to apply however, the system has to consist of homogeneous vector
fields. The surface vessel model includes trigonometric terms, and is thus not
homogeneous with respect to any dilation. To overcome this problem, we propose a
global coordinate transformation that renders the system homogeneous.

Furthermore we propose a continuous periodic time-varying feedback law. We
show that it asymptotically stabilizes, and in fact yields exponential convergence for
the underactuated surface vessel to the origin. This is illustrated by simulations.

The paper is organized as follows. Stabilizability of a class of underactuated
vehicles is addressed in Section 2. In Section 3 controllability properties of a surface
vessel with only two controls are given. In Section 4 a coordinate transformation is
proposed that renders the surface vessel model homogeneous, and a continuous periodic
time-varying feedback law is proposed that exponentially stabilizes the surface vessel
to the origin. This is illustrated by simulations in Section 5.
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2. Stabilizability of underactuated vehicles
We consider underactuated vehicles of the form

My + C(v)v + D)y + g() = [S] (1)

1= J(mv )

wherey € R™, v € R™, n =np, 7 € R”, m < n,. The matrix M is nonsingular and M = 0.
The matrix J has full rank (rank(J) = ny).

This class includes e.g. underactuated surface vessels, underwater vehicles and
spacecraft. The vector v denotes the linear and angular velocities with coordinates in
the body-fixed frame, # denotes the position and orientation with coordinates in the
earth-fixed frame, and 7 denotes the control forces and torques with coordinates in the
body-fixed frame. M is the inertia matrix, including added mass. C(v) is the Coriolis
and centripetal matrix, also including added mass. D(v) is the damping matrix and g(1)
is the vector of gravitational and buoyant forces and torques. Equation (2) represents
the kinematics.

The following proposition show that the gravitational and buoyant vector, g(1), is
important for the stabilizability properties of underactuated vehicles. The vector g(1)
consists of elements corresponding to the actuated dynamics, g(#), and elements
corresponding to the unactuated dynamics, g“(r):

_ &
&lm) = [ 3"(?1)]
g:R" = R g ()R = R

3)

Proposition 1 Consider the system (1)«2), and suppose that (n,v) =(0,0) is an
equilibrium of the system. If g"(n) has a zero element then there exists no continuous
or discontinuous state feedback law, ofn,v):R*" X R2—R" that makes (0,0)
asymptotically stable.

Proof. Consider the mapping f(n, v, 7):R™ X R X R™— R" * ™ defined by

v 0= o 4
B ‘(C(v>v+D(v)v+g(q)—[g])

Without loss of generality, we assume that

g'tm = [g?én)]g’f(ﬂ)ﬂ"‘ — R (5)
Consider points of the form
Orl| 1
= p1| o2 ©
p

where o' € R”, o € R~ ™" are arbitrary vectors, and § € R is an arbitrary non-zero
number. As J(n) has full rank, the equation f{(;, v, ) = £ implies v = 0. Thus it implies
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which has no solution (#, v, 7) as f§ is non-zero. As M is constant and nonsingular, and
o', o?, B are arbitrary vectors, points of the form & are contained in every neighborhood
of zero in R™ *™, Thus the mapping fis not onto any neighborhood of 0 in R™ * ™2, This
implies that there does not exist any continuous state feedback a(n, v):R™ X R — R™
such that (x, v) = (0,0) is an asymptotically stable equilibrium (Zabczyk 1989). As the
system (1)—(2) is affine and cannot be asymptotically stabilized by continuous state
feedback, it cannot be asymptotically stabilized by discontinuous state feedback either
(Coron and Rosier 1994). ]

3. Controllability properties of an underactuated surface vessel
We consider the surface vessel described by the following model:

Myv+ COyyw+Dv=1 (8)
it =J(n)y 9)
where
0 0 - MpV
Cv=| 0 0 myu (10)
mMpy  —mpU 0
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cosiy —singy 0
Jo)=|singy cosy 0 (11
0 0 1

M= diag{m..,m;z, M33} , D= diag{dn, dzg, d33] .

The vector v = [u, v, r]" denotes linear velocities in surge and sway, and angular
velocity in yaw. The vector 1 = [x, y, /] denotes position and orientation in earth-fixed
coordinates. The vector 7 = [1y, 7, 73]” denotes the control forces in surge and sway, and
control torque in yaw. The inertia matrix M and the damping matrix D are constant and
positive definite.

We consider the case where the surface vessel has no side thruster, i.e. 7,=0,
because this is a common thruster configuration. However, the controllability analysis
and control synthesis of this paper is easily extended to the cases where 7, or 75 are
missing.

From Proposition 1 we know that the surface vessel cannot be asymptotically
stabilized by either continuous or discontinuous state feedback, if any of the controls
are missing. However we show here that the surface vessel yet is locally strongly
accessible and small time locally controllable. Furthermore we show that by introducing
explicit time dependence in the controller, asymptotic stability may be obtained.

Let

_ J(m)v
v = [ — M (COv) + D)v] (12)
g=[0 00 = 00" g=[0 000 0. (13)
Then the system (8)—(9) with 7, =0 may be written
[:f] =fin,v) + g1t + gats (14)

Lemma | The underactuated surface vessel (14) is locally strongly accessible
Y(n,v) e RS.

Proof. The vector fields gy, g, [f, 1. [, g2). (g2, [f; 811), [g2, [[g1.1.f]] span a six-
dimensional space at every (7, v) € R®. Thus the strong accessibility rank condition is
satisfied, and consequently (14) is locally strongly accessible V(1, v) e R® (Nijmeijer
and van der Schaft 1990). 1

Proposition 2 The underactuated surface vessel (14) is small time locally
controllable from any equilibrium.

Proof. From Lemma 1 we know that the system (14) is locally strongly accessible
fromevery (1, v) € RS, and as the vector fields f; g, g, are real-analytic, this implies that
the Lie algebra rank condition is satisfied V(x, v) € R® (Sussmann 1987). We note from
the proof of Lemma 1 that any bracket with degree greater than 4 can be expressed as
a linear combination of lower order brackets. We also note that the degree of ‘bad’
brackets must be odd (Sussmann 1987). The ‘bad’ bracket of degree 1 is f, which
vanishes at any equilibrium. The ‘bad’ brackets of degree 3 are [g),[f,£]] and
[g2.1f. g211 which are identically zero vector fields. Consequently, the system (14)
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satisfies the Sussmann Theorem, and is thus small time locally controllable from any
equilibrium (Sussmann 1987). O

The following proposition shows that a time-varying feedback law that is
non-smooth at the origin, can asymptotically stabilize the surface vessel. An almost
smooth periodic time-varying feedback law for the system (14) is a function 7 in
CURE x R; R?) of class C* on (RA{0}) X R that satisfies

10,)=0 VteR 15)
wn,v,t +T)=1(n,v,1) VieR (16)

Proposition 3 The underactuated surface vessel (14) is locally asymptotically
stabilizable in small time by means of an almost smooth periodic time-varying feedback
law.

Proof. By (Coron 1995), as the dimension of the vector (#, v) is more than 4 and the
vector fields f, g1, g; are analytic, this follows from Proposition 2. O

4. Exponential stabilization of the underactuated surface vessel

From Proposition 3 we know that the surface vessel can be asymptotically stabilized
by an almost smooth periodic time-varying feedback law. However it is not trivial to
find such a feedback law. M’Closkey and Murray (1993) and Morin and Samson (1995)
have developed important analysis tools for continuous systems when the vector fields
are homogeneous with respect to a given dilation. The drift vector field of the surface
vessel (14) however includes trigonometric terms, and is thus not homogeneous with
respect to any dilation.

However, the homogeneity property is coordinate dependent. Motivated by this we
seek a coordinate transformation that renders the system homogeneous. We propose the
following coordinate transformation, which is a global diffeomorphism:

71 = cos()x + sin(yh)y

2= — sin(Y)x + cos(h)y an
ra W
The state equations of the surface vessel are then:
Li=utzr
H=v—nr
B=r (18)
_my dy 1
p=—vw——ut+—1n
my Hin L
mu M 22
V= —— e
miz Mz Mz
_ My — M dx3 1
F= u r+—
33 L) ms3

Proposition 4 Consider the functions
ud(z; v, t) = - klzl + pﬁ(z, v)sin(#s)
19)
2

Pz, v)

rdz,v,t) = —kazz + (kzz + dv)sin(t/g)



Exponential Stabilization of an Underactuated Surface Vessel 245
0.6 T T T ¥

06 ; i ; ; ; i ;
0 10 20 30 40 50 60 70 80
time [s]

Figure 3. Velocities u(-), v(---), r(—-).

where ki, k2> 0, k>0, d>0 and p* (z,v) is any homogeneous norm associated with
the dilation 03(z,v,1) = (Az1, A’2, 23, A%, 1). Given the following continuous time-
varying feedback law

w(z, v, 1) = — (ksmy — diu + ksmy ufz,v, 1)
(20)
3( Z,V, 1) = — (kamsz — d33)r + kamaarz, v, 1)
Then there exists an £0>> 0 such that for any & (0, &) and for positive and large

enough parameters ks, ks, the feedback law (20) locally exponentially stabilizes the
origin of the system (14).

Proof. The system (18)—(20) may be written

I::] = I(Z’ v, ‘) + h(z, v, t) (21)
where
_ " .
v—zr
r

Uz, v, 1) =| oe(t1—du) (22)

— mmur— %v

| é(‘fs —dur) ]
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Consider the dilation

5&(2, v, ‘) = (AZIJ lzz y 1235 zhl, sz’ )J’, t) (24)

As the functions 7, and 73 are homogeneous of degree 1 with respect to the dilation,
and continuous for (z, v) # 0, they are also continuous at zero. The vector function [/ is
thus continuous. It is furthermore time-periodic and /(0,0, #) = 0. The vector function
h is continuous. The system

[i] =z v,1) (25)

is homogeneous of degree 0 with respect to the dilation &, and the vector field & is
homogeneous of degree 2 with respect to &%. Thus the solution (z, v) = (0,0) of the
system (21) is locally pf-exponentially stable if the equilibrium (z, v) = (0,0) is a locally
asymptotically stable equilibrium of the system (25) (Morin and Samson, Prop. 2).

def
We reduce the system (25), by defining udd=efu and ry = r as control variables.

Ug
Z|_ V—Zity
HE I @
— =2y,
myy my

With controls given by (19) the averaged system of (26) is

—kizy
Z v+ koziza
= 2
[fﬂ] — kaz3 @7

—mu —m _fn
g K1K22123 -~ (kzo + dv) i ¥

The linearization of (27) about (z, v) = (0, 0) is obviously locally asymptotically stable.
Furthermore the system (26) is continuous, time-periodic and homogeneous of degree
0 with respect to the dilation 65. Thus there exists an gy > 0 such that for any & € (0, &)
the origin of (26) is locally exponentially stable (M’Closkey and Murray 1993, Th. 4.1).

The functions u4(z, v, t) and rdz, v, ) are continuous, time-periodic, differentiable
with respect to £, to class C' on (R* X R — {0,0}) X R, and homogeneous of degree 1
with respect to the dilation 85. The equations for » and  in (25) with control (20) are

u= —ky{u —udz,v.t)) (28)
F= —kyr—rdz,v,1)) (29)

Thus for positive and large enough values of ks, k; the origin (z, v) = (0, 0) of the system
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Figure 4. The natural logarithm of the homogeneous norm  pf(z,v)=
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(25) with control (19)—(20) is locally asymptotically stable (Morin and Samson 1995,
Cor. 1).

Thus (z,v) = (0, 0) is a locally exponentially stable equilibrium of (21) (Morin and
Samson 1995, Prop. 2). As (17) is a diffeomorphism, (#, v) = (0, 0) is therefore a locally
exponentially stable equilibrium of (14)—(20). O

Remark 1 The controller in Proposition 4 also exponentially stabilizes surface
vessels with higher order damping, i.e.

D(v) = diag{dy + 2, dylu|' ", dp + > dalv|' T, dis+ > ddlr|' 1)
i=2

i=3 i=2

This is easily shown by including the higher order terms into h(z, v, f).

5. Simulations
The action of the control law (19)—(20) has been simulated with control parameters

k| = 1.5, k2= 15, k3= |.0, k4=10‘
k=02,d=17,¢e=1
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The homogeneous norm used in the control law was
P @ V)=Vt +|z|+ B +|v| (31
and the initial conditions were:

[x(0), y(0), ¥(0), u(0), w0), r(O)}" =10, 1, 0, 0, 0, O}

The feedback law (19)—(20) make the origin of the underactuated surface vessel (14)
exponentially stable for small enough values of £ and large enough values of k; and
k,. The simulations illustrate that £ does not have to be very small nor k3 or k, very large.

We see that the natural logarithm of the homogenous norm p#(z, v) is upper bounded
by a decreasing straight line. This illustrates the exponential convergence of the system
1o zero.

We note from the analysis that the only model parameters that the performance of
the controller may depend on exact knowledge of, are d; and d33. We have simulated
the action of the controller when the terms d),u and dssr in (20) are neglected, and also
when d,; and d3; have much larger values than the known model parameters, and the
controller still provides exponential stability. This indicates that the controller is robust
against model parameter uncertainty.
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