“Analytical generation of the dynamical equations for mechanical manipulators”

Authors: Geir Horn and Svein Linge,
Affiliation: SINTEF
Reference: 1995, Vol 16, No 3, pp. 155-167.

Keywords: Wind power, terrain models, Navier-Stokes solver

Abstract: A package to generate the symbolic dynamic equations describing the relation between forces and movements for serial mechanical linkages with rigid constituents is presented. The relative movement between the rigid parts is assumed to be either a rotation about an axis or a translation along an axis. Two algorithms are implemented, a Lagrange-Euler method and a Newton-Euler method. The former can be used to solve both the inverse and the forward dynamics problems, while the latter requires fewer arithmetical operations but only allows solution of the inverse dynamics problem. Two test examples are presented, the double pendulum and the modified Stanford manipulator.

PDF PDF (1395 Kb)        DOI: 10.4173/mic.1995.3.4

DOI forward links to this article:
[1] Ruiqin Li, Shusen Wang, Dabao Fan, Yuting Du and Shaoping Bai (2017), doi:10.4173/mic.2017.4.2
[1] BEJCZY, A.K. (1974). Robot Arm Dynamics and Control, NASA-JPL Technical Memorandum, 33-669.Feb.
[2] BUFFINTON, K.W. (1990). Applications of PC-based multibody dynamics software in robotics, Proc. of the ISMM Int. Symp. Computer Applications in Design, Simulation and Analysis, March 5-7, New Orleans, USA, pp. 33-40.
[3] CHENG, P.Y., WENG, C.O. CHEN, C.K. (1988). Symbolic derivation of dynamic equations of motion for robot manipulators using piogram symbolic method, IEEE Journal of Robotics and Automation, 4.6, 599-609 doi:10.1109/56.9298
[4] CRAIG, J.J. (1989). Introduction to Robotics - Mechanics and Control, 2nd ed..Addison-Wesley, Massachusetts.
[5] DENAVIT, J. HARTENBERG, R.S. (1955). A kinematic notation for lower-pair mechanisms based on matrices, Journal of Applied Mechanics, 215-221.June.
[6] DRIELS, M.R., FAN, U.J. PATHRE, U.S. (1988). The application of Newton-Euler recursive methods to the derivation of closed form dynamic equations, Journal of Robotic Systems .3, 229-248 doi:10.1002/rob.4620050305
[7] FU, K.S., LEE, C.S.G. GONZALES, R.C. (1987). Robotics: Control, Sensing, Vision, and Intelligence, Ch. 2.McGraw-Hill, New York.
[8] GOERTZ., R.C. (1963). Manipulators used for handling radioactive materials, Human Factors in Technology, chapter 27, ed. by E. M. Bennett.McGraw-Hill.
[9] GOLDSTEIN, H. (1981). Classical Mechanics 2nd ed, Addison-Wesley.
[10] JU, M.S. MANSOUR, J.M. (1989). Comparison of methods for developing the dynamics of rigid body systems, International Journal of Robotics Research, .6, 19-27 doi:10.1177/027836498900800602
[11] KAHN, M. ROTH, B. (1971). The near-minimum-time control of open loop kinematic chains, Trans. ASME, Series G. 93, 164-172.
[12] KANE, T.R. LEVINSON, D.A. (1983). The use of Kane´s dynamical equations in robotics, The International Journal of Robotics Research, .3, 3-21 doi:10.1177/027836498300200301
[13] KOPLIK, J. LEU, M.C. (1986). Computer generation of robot dynamics equations and the related issues, Journal of Robotic Systems, .3, 301-319 doi:10.1002/rob.4620030308
[14] LEE, C.S.G., LEE, B.H. NIGAM, R. (1983). Development of the generalized D´Alembert equations of motion for robot manipulators, Proc. 22nd conf Dec. and Contr., San Antonio, TX, pp. 1205-1210.
[15] LEU, M.C., HEMATI, N. (1986). Automated symbolic derivation of dynamic equations of motion for robotic manipulators, Trans. ASME J. Dyn. Syst., Meas. and Contr., 108, 172-179.
[16] LI, C.J. (1988). A new method of dynamics for robot manipulators, IEEE Transactions on Systems, Man, and Cybernetics, 18.
[17] LUH, J.Y.S., WALKER, M.W. PAUL, R.P. (1980). On-line computational scheme for mechanical manipulators, Transactions of the ASME, pp. 69-76.
[18] MURRAY, J.J.and NEUMAN, C.P. (1984). ARM: An algebraic robot dynamic modeling program, Proc. of 1st. Int. IEEE Conf. on Robotics ed. by R. P. Paul. Atlanta, GA, March, pp. 103-114.
[19] PAUL, R.P. (1981). Robot Manipulators: Mathematics Programming and Control, M.I.T. Press, Cambridge, MA.
[20] RAIBERT, M.H. (1977). Mechanical Arm Control Using a State Space Memory, Technical Paper MS77-750. Society of Manufacturing Engineers.SME, Dearborn, Michigan.
[21] RUDAS, J.I., TOTH, A. (1993). Efficient recursive algorithm for inverse dynamics, Mechatronics, 3.
[22] SCHEINMAN, V.D. (1969). Design of a Computer Manipulator, AIM 92. Stanford Artificial Intelligence Laboratory, Stanford University.
[23] TOUMI, K.Y. (1992). Analysis and design of manipulators with decoupled and configuration-invariant inertia tensors using remote actuation, Journal of Dynamic Systems, Measurement and Control 114.June, 204-212 doi:10.1115/1.2896516
[24] UICKER, J.J. JR. (1966). Dynamic force analysis of spatial linkages, Mechanisms Conference.
[25] WHITE, W.N. JR., NIEMANN, D.D. LYNCH, P.M. (1989). The presentation of Lagrange´s equations in introductory robotics courses, IEEE Transactions on Education, 32.Feb., 39-46 doi:10.1109/13.21161
[26] WLOKA, D.W. (1989). Efficient calculation of generalized forces in a robot simulation environment, Proc. of the 3rd. European Simulation Congress. Sept. 5-8, Belgium, pp. 595-601.
[27] YIN, S., YUH, J. (1989). An efficient algorithm for automatic generation of manipulator dynamic equations, IEEE International Conference on Robotics and Automation. May 14-19, Scottsdale, AZ.4.4, pp. 1812-1817.

  title={{Analytical generation of the dynamical equations for mechanical manipulators}},
  author={Horn, Geir and Linge, Svein},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}