MODELING, IDENTIFICATION AND CONTROL, 1995, voL. 16, No. 3, 155-167
doi:10.4173/mic.1995.3.4

Analytical generation of the dynamical equations for
mechanical manipulators

GEIR HORNY and SVEIN LINGE?
Keywords: Manipulator models, symbolic computation

A package 10 generate the symbolic dynamic equations describing the relation
between forces and movements for serial mechanical linkages with rigid
constituents is presented. The relative movement between the rigid parts is assumed
to be either a rotation about an axis or a translation along an axis. Two algorithms
are implemented, a Lagrange-Euler method and a Newton-Fuler method. The
former can be used to solve both the inverse and the forward dynamics problems,
while the latter requires fewer arithmetical operations but only allows solution of
the inverse dynamics problem. Two test examples are presented, the double
pendulum and the modified Stanford manipulator.

1. Introduction

ROBMAT (ROBotics with MAThematica) is a package for symbolic generation of
the dynamical equations for mechanical linkages, such as robot manipulators. The
dynamical equations describe how applied forces and movements are related for the
mechanism. A manipulator is a mechanical arm made of rigid pieces, usually with a
gripper or tool at the moving end (see Fig. 1). The pieces can be moved relative to each
other by the use of actuators. Relative movements can be of different kinds, normally
either a rotation around an axis or a translation along an axis. We require the relative
motion between two successive parts to be either of these. The axis of movement is
called the joint axis and the rigid pieces are called links. To limit the structural
complexity, only manipulators with an open structural chain of links are handled.

The use of such manipulators started in the 1940s, when systems for handling
dangerous radioactive material were developed to free man from this hazardous
environment (Goertz 1963). Research, design, and manufacturing of industrial
manipulators took off in the 1960s, with repeatable or hazardous tasks as the main
application areas. However, experience showed that these devices were more difficult
to control than perhaps first imagined.

The dynamical equations for a manipulator can be very complex, containing several
force contributors in nontrivial expressions. For very simple manipulators, with only
two joints or so, they can be derived by hand. However, the process is tedious and prone
to error, and the difficulty increases dramatically with the number of joints. This makes
it tempting to utilize a computer for the task. Even when a computer is used, often only
the major force contributors are considered, while the minor ones are left out of the
mathematical expression. In the package described here, only inertia, Coriolis,

Received 10 November 1994.

T SINTEF-SI, Forskningsveien 1, Postboks 124, Blindern, N-0314 Oslo, Norway. e-mail
Geir. Horn@si.sintef. no

Reprinted, with permission, from The Mathematica Journal, 1994, Vol. 4, No. 4, 67-73.

156 G. Horn and S. Linge

Base

Figure 1. The six joint PUMA 560 manipulator. (From [Craig 1989], reprinted by permission
of Addison-Wesley).

centrifugal, and gravity forces are modeled, which is common practice. This means that
factors such as friction. flexibility of the ‘rigid’ links, joint compliance, and so on, are
disregarded.

Symbolic generation of the dynamical equations is fundamental for developing
good control algorithms, but also for choosing good design solutions (Toumi 1992). The
performance of a symbolically modeled manipulator can be analysed before it is
actually built, thereby making good design choices possible. The symbolic form is also
important from a computational viewpoint, since evaluating it for the numerical values
of its components is less computationally expensive than computing the same result
from scratch by applying the algorithms to the numerical quantities directly (Ju and
Mansour 1989, Koplik and Leu 1986, Leu and Hemati 1986). The autonomous
generation of symbolic manipulator dynamics has been addressed by several other
researchers, such as (Buffinton 1990; Ju and Mansour 1989; Yin and Yuh 1989; Wloka
1989; Cheng et al. 1988; Koplik and Leu 1986; Leu and Hemati 1986). We believe our
package is the first to use an algorithm developed by Li (1988) to obtain the dynamical
equations in symbolic form.

We address both the forward and the inverse dynamics problem. The forward
dynamics problem is the task of computing the motion resulting from given input forces,
while the inverse dynamics problem is the task of computing forces and torques required
for a desired movement. Our implementation covers one algorithm from each of two
approaches, Lagrange-Euler and Newton-Euler, to the derivation of symbolic
dynamical equations. The two approaches are covered here briefly: for tutorials, see
Driels et al. (1988) on the former and White et al. (1989) on the latter.

Since most readers are probably unfamiliar with fundamental robotics theory, we
also explain the use of coordinate systems necessary to produce the dynamical equations
via ROBMAT. Following a description of the package, we present two examples: a
double pendulum and a modified Stanford manipulator.

2. Mathematical description of a manipulator

To develop a mathematical description of a manipulator, one first has to assign a
coordinate system to each link. We present here a common way of doing this, due to
Denavit and Hartenberg (1955); a comprehensive treatment can be found in Fu et al.
(1987).

Dynamical equations for mechanical manipulators 157

Figure 2. A link connecting two rotational joints. (From [Paul 1981], reprinted by permission
of MIT Press).

2.1. The parameters for one link

First, one identifies the axes around which we have a rotation, and the axes along
which we have a translation. These will be the z-axes of the three-dimensional
coordinate systems to be assigned. Consider a link connecting two rotational joints, as
shown in Fig. 2.

Any link i can be characterized by two parameters: the length /; measured along the
common normal of both axes, and the spatial twist angle a; between the two joint axes.
These two measures are illustrated in Fig. 2 and are fixed parameters for the link.

We assign the coordinate system for the ith link at its distal end and place the origin
of the coordinate frame at the axis of movement where the length normal, along which
1; is measured, meets the axis. From now on, this axis will be referred to as the z;-axis.

2.3. Binding links together

Introducing the next link into the chain, we get a new normal to the z-axis measuring
the length /; . | of link i + 1. This line will generally not meet the z-axis at the origin.
We will denote the offset between the intersection point and the z-axis originby d; ;.
This offset is fixed for rotational joints, as illustrated in Fig. 3. For prismatic joints, at
which a translational movement takes place along the z-axis, this distance will be a
function of time.

Between the two normals along which /;and /; are measured, there will be a spatial
angle. It is customary to denote this angle 6; ., (Fig. 3). For a rotational joint with axis

Aoas i+]

Figure 3. Two links connected at a rotational joint. (From [Paul 1981], reprinted by permission
of MIT Press).

158 G. Horn and S. Linge

2. this angle will be a function of time. For a prismatic joint, however, this angle will
remain a fixed parameter.

We have three fixed parameters for each link: its defined length ;, its twist o, and
either the displacement d; ., (for rotational joints) or the angle 6;+ (for prismatic
joints). For practical design reasons, a joint of a real industrial manipulator has only
one degree of freedom; it is either rotational or prismatic.

2.4. The coordinate frames, transformation matrix and position vector

So far, we have only located the origins and the z axes of the coordinate systems.
Let the x; axis be directed along the normal where /; is measured and pointing towards
the next joint axis, and let the y; axis be orthogonal to both the x; and the z; axes such
that the coordinate frame forms a right-hand coordinate system.

The only exception is when the z; and z; _ axes intersect. Then /; = 0 and we find
the direction of the z; axis as X; = & X Zi—1.

At the end of the manipulator chain, the axes of the coordinate system for link n
are chosen to be initially aligned with that of the coordinate frame for the link n — 1,
as the final displacement d, or rotation angle 6, occurs with respect to Zn—1.

Starting with coordinate system i — 1 and aligning it with the coordinate frame £,
we have to

e rotate about z;—; an angle 0;

e translate along z;— a distance d;

e now, x;_, points in direction of x;, and we translate along this axis a distance I;
e rotate the twist angle o; about x;.

The transformation matrix between these frames can be written as a product of 4 X 4
homogeneous transformation matrices (Denavit and Hartenberg 1955):

A;=Rot(z;-1,0;) Trans (0, 0, d;) Trans (/;, 0. 0) Rot (x;, o;;)

[cosf; —sinf; O O][1 0 O L][1 O 0 0
sinf, cosf; O O[O0 1 O 0O]||0 cose; —sineyg O
| o 0 1 0[|0o 01 4||0 sina cosw ©
| 0 0 0O 1JL0 0 0 OJL0 0 0 1
[cosf; —sinbficoso; sinB;sineg Lisin6;
sinf; cosfcosx; —cos@;sing I;sing;
- 0 sin o COS o; d;
L 0 0 0 1

Given this matrix, we can transform a vector v, which is the three-dimensional
vector given in the coordinate frame /, augmented with 1 as a fourth element, to the
corresponding vector v/ ! represented in the coordinate system i — 1 by

v =AW

In the last column in the transformation matrix, we recognize the position vector from

Dynamical equations for mechanical manipulators 159

the origin in coordinate system i — 1 to the origin of coordinate system i, expressed in
coordinate system i — 1

p: = [1; cos (0)1;sin (0,)d;]"

2.5. The inertia tensor

To describe the mass distribution around the centre of mass of a rigid body, the
inertia tensor L is defined for a coordinate system attached to the centre of mass as

Le —L, —1I
L=|— IJ}' L, - "}'z
—I. —1I, I.
The diagonal elements are termed mass moments of inertia, and each is computed as

the integral of the mass element times the square of the perpendicular distance to the
corresponding axis o

o= ” (P + y")dm

where ff and y are distances along the other two axes of the coordinate system. Similarly,
the inertia products are defined by

|t

To find the kinetic energy of the rigid body, one needs the pseudo-inertia matrix J,,
computed from the inertia tensor as

WL, +1,+1) I, I
Je= Ixy ’l‘(— Lt I))* + 1) lyz
I I, -1+ I,+1)

When defining a manipulator in ROBMAT, one must provide an inertia tensor for each
link, with respect to a coordinate system at the centre of mass that has identical
orientation with the coordinate system attached to the link. Whenever the pseudo
inertia matrix is needed, ROBMAT will use the formula above to compute J. from the

given I.

3. Describing a manipulator in ROBMAT

For each joint and link, ROBMAT needs to know its type and fixed parameters. It
also needs the inertia tensor for the associated link and a vector giving the position of
the centre of mass for the link expressed in the link’s coordinate frame. These inputs
are arranged as a list

Lj: [P or R, fj, C!j,&j or d,—,mj,lq, r_,-}

Here, the letter P is used to specify a prismatic joint and the letter R a revolute joint.
For the former joint type, the fixed value of ¢; must be given, while the latter requires
the fixed value of d;. m; denotes the mass of the link, 1; is the inertia tensor, and r; is
the n X 1 position vector to the centre of mass, also measured with respect to the link’s
coordinate frame. Either L; or rj, or both, may be omitted, in which case the default

160 G. Horn and S. Linge

values of zero will be used, corresponding to a point mass at the origin of the link
coordinate system. As Mathematica is a symbolic tool, we emphasize that these
parameters need not be numerical values.

The entire manipulator, consisting of » such link lists, is given to ROBMAT by
calling the function DefineManipulator with n arguments, each a list defining one
link:

M = DefineManipulator[L,, ... ,L,]

This function does a parameter check and returns an object of type manipulator, with
any default arguments expanded.
To start using a defined manipulator with ROBMAT, the function

ActivateManipulator[M]

needs to be called with a manipulator object M as argument. This syntax allows one
to define several different manipulators, or to maintain different configurations of one
manipulator, and then easily change the manipulator for which ROBMAT does its
computations. ROBMAT assumes one configuration valid until another is activated
with ActivateManipulator. Hence, this syntax also reduces the number of parameters
needed to be passed to the functions carrying out the computations.

4. The dynamical equations

Several methods exist for the description of manipulator dynamics. Apart from the
Lagrange-Euler and Newton-Euler methods, there are methods utilizing other
principles, such as Kane’s equations (Kane and Levinson 1983), the D’ Alembert
principle (Lee et al. 1983), and the Gibbs function (Rudas and Toth 1993). However,
the first two methods have gained the most widespread use, Lagrange-Euler because
its form is appropriate for control purposes, and Newton—FEuler because of its low
demand on arithmetical computations. ROBMAT implements both methods, which are
briefly outlined below.

4.1. Generalized coordinates

A manipulator is not free to move everywhere; its movement is constrained to its
reachable subspace, determined by all possible configurations of the joint variables d
and 6. Because of the constraints, there are relations among the coordinates and the
mechanical equations of motion are not all independent. To overcome this difficulty,
generalized coordinates are introduced. A generalized coordinate can be any useful
quantity; it need not be a conventional orthogonal position coordinate.

For a manipulator, the generalized coordinate g; -, is the joint variable, that is, d; + |
for a prismatic joint or 6; ., for a revolute joint. The vector of all such coordinates,

q=I[q1 .. q"
is a vector in the joint space of the manipulator.
4.2. The Lagrange—Euler approach

To obtain the equations of motion by the Lagrange—Euler approach, first form the
Lagrangian energy function,

L(q,q.0) =T(q, 7 — V(q,0)

Dynamical equations for mechanical manipulators 161

where T(q, 1) is the kinetic energy and V(q, ?) is the potential energy, such that the
generalized force acting at joint i is determined by

d d
i= T v(£l =— s Y t
g,) oq L@.4.0)
Now we are able to state Hamilton’s principle of least action: The motion of the system
Jrom time 1, to t, is such that the action (line) integral

2
W= f L(q, 4. ndt
n

attains a minimum.
A sufficient condition for the integral to have a minimum value is

d (aL) aL

—_—— — = F!.

dt 0g; dqi
for all i, which is the famous Lagrange equation of motion (Goldstein 1981). Here, F;
is an externally applied generalized force, which is either a force or a torque, depending
upon whether g, is a linear or an angular coordinate. This force comes in addition to
F; and does not originate from the potential.

Lagrange’s equations were used by Uicker (1966), Kahn and Roth (1971), Paul
(1981), Bejczy (1974) to derive the dynamic equation of robot manipulators with n
degrees of freedom (see Paul (1981) for a comprehensive treatment). The resulting
equations can be written as

F = M(q){ + 2B(q)qq + C(@)q* + G(q)

which is called the configuration space equation, since the coefficient matrices only
depend on the current arm configuration q (Raibert 1977). Here, F is an n X 1 vector
of externally applied forces needed to generate the movement described by q, ., and
4. M(q) is an n X n symmetric positive definite inertia matrix and M(q){ represents the
inertial forces vector. The n X [n(n — 1)/2] Coriolis coefficient matrix B(q) is composed
of submatrices

B(q) = [Bi(q), B2(q)...,B,_i(q)]

where B{(q) is an n X (n — i) matrix whose submatrix from the i + 1th row to the nth
row is skew-symmetric. Further, the [n(n — 1)/2] X | vector of joint velocity products
is given by

449 = [(94)". (442", ..., (4G, -)"T"
49 = [9:Gi + 1, GiGi + 25 - 1 GiGn]"
The product 2B(q)qq represents the Coriolis forces vector. C(q)§? is the centrifugal

force vector, where C(q) is an n X n matrix of centrifugal coefficients and §”is the n X 1
vector

U

The configuration space equation express clearly the different contributors to the
dynamics (excluding the dynamics of gear friction, backlash, and the electronic control
device). It therefore forms the best available basis for the design of control systems and
the dynamic simulation of manipulators.

162 G. Horn and S. Linge

ROBMAT computes the coefficient matrices of the configuration space equation
for the activated manipulator by means of the function ConfigurationSpace[q, gl
where q is the vector of generalized joint variables and g is the gravitation field vector
with respect to the base coordinate frame. This function returns the list of matrices
{M,B, C,G}. The matrices will be simplified unless ROBMAT is told not to call
Simplify by setting the option Simplification to False.

Until recently, computing the configuration space coefficient matrices was rather
laborious. ROBMAT uses the recursive method of Li (1988) for this computation,
reducing the computational burden in terms of arithmetical operations to be only slightly
less efficient than the Newton—Euler approach, at least for manipulators of up to about
six degrees of freedom.

To encourage the study of the effect of the different physical terms in the
configuration space equation, ROBMAT contains two functions for computing the
vectors used in the Coriolis term and in the centrifugal term: qq[q] computes the vector
qq and g*[q] computes the vector §°.

4.3. The Newton—Euler approach

The force acting on the centre of mass of a rigid body accelerating with acceleration
V¢ is given by Newton’s second law

F.=mv,

where m is the mass of the body. For a body rotating with angular velocity «, around
its centre of mass with an angular acceleration ¢, Euler’s equation

N = Lar + w X (Lw)

gives the torque N, that acts on the body to cause this rotation. Here, I is the inertia
tensor of the rigid body about its centre of mass.

By successively applying these two equations to the links of the manipulator, Luh
et al. (1980) derived a recursive algorithm for computing the dynamic equations of
motion. Their algorithm consists of the following steps.

(1) Compute the angular accelerations and the linear accelerations of the mass
centre of each link. As the base of the manipulator is not moving, the
computation starts at the base and propagates outwards.

(2) Then apply the Newton-Euler equations to compute the inertial force and
moment acting at the centre of mass of each link.

(3) Each link experiences forces and torques exerted on it by its neighbours. Hence,
this time we start at the tip of the manipulator, with the link having no outer
neighbours, and work back towards the base, computing the net force and
moment exerted on link i from the net force and moments on link i + 1 and the
quantities computed in step 2 for link i.

The resulting expression for the externally applied forces in terms of q, q, and §
can be computed by the function NewtonEuler[q, g], provided that ROBMAT is able
to obtain the derivatives from the symbolic vector q. If this is not the case, the full form
NewtonEuler|q, 4, @, g] should be used. In both cases, the vector g is the gravitation
vector expressed in the base coordinate frame. Again, the returned expression for F is
simplified by ROBMAT unless the user sets the Simplification option to False.

Dynamical equations for mechanical manipulators 163

=y0

X0

Figure 4. The double pendulum. /, and I, are the link lengths, m, and m, are the masses of the
two links and 0 and 0, are the joint angles.

4.4. The forward dynamics problem

To simulate the movement under a given applied force F, we need a differential
equation for q. which is easily found from the configuration space equation as

i=M"'(@[F - 2B(q)dq — C(q)4’ — G(q)]

The mass matrix is invertible because it is positive definite. This equation is also needed
for studying the effects of imperfect modeling (see Craig (1989)).

5. The double pendulum

The double pendulum is an arrangement of two links that rotate relative to each other
in a plane under the action of gravity. The two axes of rotation are parallel and oriented
at a right angle to the plane of movement (see Fig. 4). This linkage is a common test
arrangement in robotics. The dynamical equations can be found elsewhere (for example,
in Craig (1989)). providing a check of the implemented algorithms.

For simplicity, the link masses are regarded as point masses. The linkage is specified
with the DefineManipulator function:

In[11:= <<RobMat.m

In[2]: = DoublePendulum = DefineManipulator|
{*R",L[1],0,0,m[1]}, {"R",LI[2],0,0, m[2]}]

Out[2] = —manipulator—

This manipulator will not be the subject for dynamical calculations until the ROBMAT
activation command is issued:

In[3]: = ActivateManipulator[DoublePendulum]

The components of the configuration space equation for the currently active
manipulator are calculated by the function ConfigurationSpace. This function takes
as input the symbolic vector of generalized coordinates and the gravity vector g
expressed in the base coordinate system and returns the list of matrices {M,B,C,G}:

164 G. Horn and §. Linge

Inl4l:= {M, B, CC, G} = ConfigurationSpacel
{ql1]it], ql21lt}}, {g, O, 0}, Simplification —> True];
In[5): M

Outl5]= {LI11* m[1]1+ L[1]* m[2] +

2 Coslql21It]] L[1] L[2] m[2] + LI2F* m[2],
L[2] (Coslql2][t]] LI1] + LI2]) m(2]},

{L[2] (Cos[q[21[t]] L[1] + L[2]) m[2], L[2]? m[21}}
Inel:= B
Outl6l= {{— (L[] LI2] m[2] Sinlqg[2][t]I}}, {O}}
In[71: CC
Outl71= {{0, —(L[1] LI2] m[2] Sinl[ql[2][t]})},
{L[1] LI2] ml[2] Sinlql2]it]], O}}
InfBl:= G
Outl8l= {g (L[1] m[1] Sin[g[11[t]] + L[1] m[2] Sin[g[1][t]] +
LI2] m[2] Sin[ql1]It] + ql21[t]]),
g LI2] m[2] Sinlql11[t] + ql2](t]]}
The dynamics can also be computed using the Newton-Euler method by the
function NewtonEuler:
9= F=NewtonEulerl{q[1][t], ql2][tl}, {g, 0, O},
Simplification —> True]
Outl9]= {g LI[1] m[1] Sinlq[11[t]] + g L[1] m[2] Sinlg[1][t]] +
g LI2] mi2] Sinlq[1]it] + ql2][t]] -
2 L[1] L[2] mI2] Sinlql2][t]] (g[1])’'[t] (g[2])'[t] —
L[1] LI2] m(2] Sin[ql2][t)] {q[2])'[t]* +
L[11Z2 m[1] (q[1D)"'[t] + L[11%2 m[2] (q[1])'"[t] +
2 Coslqgl2](t]] L[1] LI2] m[2] (q[1]D)""[t] +
L[212 m[2] (g[1])"'[t] +
Coslq(2]t]] L[1] LI2] m[2] (gf2])""[t] +
LI21? m[2] (q[2])''[t],
L[2] m[2] (g Sinlgl[1]it] + q[2][t]] +
L[} Sinlql2][t]] (q[1])'[t]* +
Coslql21[t]] L[1] (q[1])"’[t] + LI2] (q[1D)"'[t] +
LI2] (ql2])'"[t])}
This result is identical to that obtained from the configuration space equation:

In[10]: = f=M.Dl{ql11(t], ql2][x]}, {t, 2}] +
2B.qq[DI{gl[11It], gl2][t1}, tl] +
CC.q2[DI{al11It], gl2](t]}, t]] + G // Simplify;

Dynamical equations for mechanical manipulators 165

Figure5. The Stanford manipulator. (From [Paul 1981], reprinted by permission of MIT Press.)

In[11]:= F—f // Simplify
Out[11] = {0, O}

6. The modified Stanford manipulator

The Stanford manipulator (Fig. 5) is another common test manipulator (Scheinman
1969). It is often used in a modified form by excluding the three outermost links. As
with the double pendulum, the dynamic equations in symbolic form can be found
elsewhere (for example, Cheng et al. (1988)), providing another check on the
correctness of the package. The manipulator is specified with the following inputs to
ROBMAT:

In[12]: = Inertiali_Integer] :=

DiagonalMatrix[{IxxI[il, lyylil, 1zz[i]}]
In[13]: = Stanford = DefineManipulator|

{*R", 0, —Pi/2, 0, m[1], Inertial1], {0, y[1], z[1]}},

{“R", 0, Pi/2, d[2], m[2], Inertia[2], {0, y[2], O},

{“P”, 0, 0, 0, m[3], inertial3], {0, 0, z[3]}}]
Out[13] = —manipulator—
Due to Mathematicas’s difficulties simplifying the expressions, the division by 2 along
the diagonal of the pseudo inertia matrix may need to be replaced with a multiplication
by 0.5. The user can switch from the default division to multiplication by setting an
option when the manipulator is activated.
In[14]: = ActivateManipulator[Stanford,

PseudolnertiaCoefficient —> 0.5];
The dynamics are calculated by the following inputs. Since the results are rather lengthy,
they are not shown here. The reader is referred to the notebook RobMat.ma, included

with the electronic supplement or found at http://www.oslo.sintef.no/avd/31/3170/
index.html

166 G. Horn and S. Linge

In[15]:

{M, B, CC, G} = ConfigurationSpacel

{qI11It], q2Iit], dI31[t], {0, 0, —g},
Simplification —> Truel;

In[16]: = F = NewtonEuler[{g[11[t], ql2][t], d[3][t]},
{0, 0, — g}, Simplification —> Truel];

7. Conclusions

The ROBMAT package generates the dynamical equations for a rigid-link,
open-chain manipulator with translational and rotational joints. Two different
algorithms are implemented, one Lagrange—Euler and onc Newton—Euler. Li’s
Lagrange-Euler algorithm (Li 1988) is used to generate the dynamical equations
symbolically. ROBMAT provides the possibility of solving both the inverse and the
forward dynamics problem at acceptable speeds, using the method most appropriate for
the problem at hand.

The simplification process is by far the most time consuming step in generating the
dynamical equations. When no simplification is demanded, we found that the
Lagrange-Euler algorithm is faster than the Newton-Euler algorithm for both
manipulators. For the simplified and final expressions, the Lagrange-FEuler implemen-
tation is substantially faster than Newton—Euler for the modified Stanford manipulator,
even when tested with zero inertia to avoid the pseudo-inertia problem, while the
opposite was observed for the double pendulum. This is only an example of what may
be expected since the two methods result in different unsimplified expressions for the
same manipulator, which in turn gives Simplify a more or less easy job. We tried
different combinations of Simplify for the two steps of the Lagrange—Euler method
and observed that using Simplify only at the last step gave the fastest solution. This
means that an early simplification in a succession of computations might not be the
wisest thing to do.

Several possible extensions to ROBMAT would be useful. One is the ability to
generate efficient C code. Mathematica’s CForm can currently be used, but the
resulting code is far from optimal as common subexpressions are computed repeatedly,
instead of being stored in memory. Other useful extensions would be the ability to model
closed chain structures, to produce the linearized dynamical equations, and to generate
the discrete-time dynamical model.

ACKNOWLEDGMENT
The authors would like to thank Professor Marc Raibert of MIT for kindly providing
the reference Raibert (1977) immediately after our desperate inquiry informing him that
our excellent librarians were forced to resign.

REFERENCES

Besczy, A. K. (1974). Robot Arm Dynamics and Control. NASA-JPL Technical Memorandum,
33-669 (Fcb.).

BurFinTON, K. W. (1990). Applications of PC-based multibody dynamics software in robotics.
Proc. of the ISMM Int. Symp. Computer Applications in Design, Simulation and Analysis,
March 5-7, New Orleans, USA, pp. 33-40.

CHENG, P. Y., WENG, C. O. and CHEN, C. K. (1988). Symbolic derivation of dynamic equations
of motion for robot manipulators using piogram symbolic method. IEEE Journal of
Robetics and Automation, 4 (6), 599-609.

Dynamical equations for mechanical manipulators 167

CRrAIG, 1. J. (1989). Introduction to Robotics—Mechanics and Control. 2nd ed. (Addison-Wesley,
Massachusetts).

DENAVIT, J. and HARTENBERG, R. S. (1955). A kinematic notation for lower-pair mechanisms
based on matrices. Journal of Applied Mechanics, 215-221 (June).

DrieLs, M. R, Fan, U. J. and PATHRE, U. S. (1988). The application of Newton—Euler recursive
methods to the derivation of closed form dynamic equations. Journal of Robotic Systems
5(3), 229-248.

Fu, K. 8., LEE, C. 8. G. and GONZALES, R. C. (1987). Robotics: Control, Sensing, Vision, and
Intelligence, Ch. 2 (McGraw-Hill, New York).

GOERTZ, R. C. (1963). Manipulators used for handling radioactive materials. Human Factors in
Technology, chapter 27, ed. by E. M. Bennett (McGraw-Hill).

GOLDSTEIN, H. (1981). Classical Mechanics 2nd ed. (Addison-Wesley).

Ju, M. S. and MANSOUR, J. M. (1989). Comparison of methods for developing the dynamics of
rigid-body systems. International Journal of Robotics Research, 8 (6), 19-27.

KaHN, M. and RoTH, B. (1971). The near-minimum-time control of open loop kinematic chains.
Trans. ASME, Series G, 93, 164-172.

KanE, T. R. and LEVINSON, D. A. (1983). The use of Kane’s dynamical equations in robotics.
The International Journal of Robotics Research, 2 (3), 3-21.

KopLIK, J. and Leu, M. C. (1986). Computer generation of robot dynamics equations and the
related issues. Journal of Robotic Systems, 3 (3), 301-319.

Leg, C. S. G., Leg, B. H. and NiGamMm, R. (1983). Development of the generalized D’ Alembert
equations of motion for robot manipulators. Proc. 22nd conf. Dec. and Contr., San
Antonio, TX, pp. 1205-1210.

Leu, M. C,, and HEMATI, N. (1986). Automated symbolic derivation of dynamic equations of
motion for robotic manipulators. Trans. ASME J. Dyn. Syst., Meas. and Contr., 108,
172-179.

Li, C. J. (1988) A new method of dynamics for robot manipulators. IEEE Transactions on
Systems, Man, and Cybernetics, 18.

Lun, J. Y. S, WALKER, M. W. and PauL, R. P. (1980). On-line computational scheme for
mechanical manipulators, Transactions of the ASME, pp. 69-76.

MURRAY, J. J.and NEUMAN, C. P. (1984) ARM: An algebraic robot dynamic modeling program.
Proc. of Ist. Int. IEEE Conf. on Robotics ed. by R. P. Paul. Atlanta, GA, March,
pp- 103-114.

PauL,R.P. (1981). Robot Manipulators: Mathematics Programming and Control (M.LT. Press,
Cambridge, MA).

RAIBERT, M. H. (1977). Mechanical Arm Control Using a State Space Memory. Technical Paper
MS77-750. Society of Manufacturing Engineers (SME), Dearborn, Michigan.

Rupas, J. 1., and TotH, A. (1993). Efficient recursive algorithm for inverse dynamics.
Mechatronics, 3.

SCHEINMAN, V. D. (1969). Design of a Computer Manipulator. AIM 92. Stanford Artificial
Intelligence Laboratory, Stanford University.

Toumr, K. Y. (1992). Analysis and design of manipulators with decoupled and configuration-in-
variant inertia tensors using remote actuation. Journal of Dynamic Systems, Measurement
and Control 114 (June), 204-212.

UICKER, J. J. JR. (1966). Dynamic force analysis of spatial linkages. Mechanisms Conference.

WHITE, W. N. Jr., NIEMANN, D. D. and LyncH, P. M. (1989). The presentation of Lagrange's
equations in introductory robotics courses. IEEE Transactions on Education, 32 (Feb.),
39-46.

WLoka, D. W. (1989). Efficient calculation of generalized forces in a robot simulation
environment. Proc. of the 3rd. European Simulation Congress. Sept. 5-8, Belgium, pp.
595-601.

Yy, S., and Yun, 1. (1989). An efficient algorithm for automatic generation of manipulator
dynamic equations. IEEE International Conference on Robotics and Automation. May
14-19, Scottsdale, AZ 4.4, pp. 1812-1817.

