### “Computing energy-optimal trajectories for an autonomous underwater vehicle using direct shooting”

**Authors:**Inge Spangelo and Olav Egeland,

**Affiliation:**NTNU, Department of Engineering Cybernetics

**Reference:**1992, Vol 13, No 3, pp. 163-174.

**Keywords:**ROV, optimal control, nonlinear programming, direct shooting

**Abstract:**Energy-optimal trajectories for an autonomous underwater vehicle can be computed using a numerical solution of the optimal control problem. The vehicle is modeled with the six dimensional nonlinear and coupled equations of motion, controlled with DC-motors in all degrees of freedom. The actuators are modeled and controlled with velocity loops. The dissipated energy is expressed in terms of the control variables as a nonquadratic function. Direct shooting methods, including control vector parameterization (CVP) arc used in this study. Numerical calculations are performed and good results are achieved.

PDF (1624 Kb) DOI: 10.4173/mic.1992.3.4

**DOI forward links to this article:**

[1] Andreas J. Hausler, Alessandro Saccon, Antonio M. Pascoal, John Hauser and A. Pedro Aguiar (2013), doi:10.1109/OCEANS-Bergen.2013.6608137 |

[2] I. Spangelo and O. Egeland (1993), doi:10.1016/S1474-6670(17)48622-8 |

**References:**

[1] ATHANS, M. FALB, P.L. (1966). Optimal Control: An Introduction to the Theory and its Application, McGraw-Hill Book Company.

[2] BOCK, H.G. PLITT, K.J. (1985). A multiple shooting algorithm for direct solution of optimal control problems, Proceedings of the 9th Triennal World Congress of IFAC, Budapest 1984,.Pergamon-Press, Oxford, 3, pp. 1603-1608.

[3] BRYSON, A.E. HO, Y.C. (1975). Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere Publishing Corporation, Washington, D.C.

[4] FOSSEN, T.I. SAGATUN, S.I. (1991). Adaptive control of nonlinear systems: A case study of underwater vehicles, J. Robotic Systems, 8, 393-412 doi:10.1002/rob.4620080307

[5] FOSSEN, T.I. (1991). Nonlinear modelling and control of underwater vehicles, doctoral dissertation, Division of Engineering Cybernetics. The Norwegian Institute of Technology, 1991.

[6] GILL, P.E., MURRAY, W. WRIGHT, M.H. (1981). Practical Optimization, Academic Press Limited, London.

[7] GOH, C.J. TEO, K.L. (1988). Control parameterization: a unified approach to optimal control problems with general constraints, Automatica, 24, 3-18 doi:10.1016/0005-1098(88)90003-9

[8] HARGRAVES, C.R. PARIS, S.W. (1987). Direct trajectory optimization using nonlinear programming and collocation, J. Guidance and Control, 10, 338-342 doi:10.2514/3.20223

[9] HORN, M.K. (1990). Solution of the optimal control problem using the software package STOMP, In H. B. Siguerdidjane and P. Bernhard.ed. Control Applications of Nonlinear Programming and Optimization 1989. IFAC Workshop Series, Number 2,51-56.

[10] KELLER, H.B. (1968). Numerical methods for two-point boundary-value problems, Blaisdell Publishing Company.

[11] KRAFT, D. (1985). Comparing mathematical programming algorithm based on Lagrangian functions for solving optimal control problems, In H. E. Rauch (ed.) Control Applications of Nonlinear Programming, (Pergamon Press, New York).

[12] KRAFT, D. (1985). On converting optimal control problems into nonlinear programming problems, In K. Schittkowski (ed.) Computational Mathematical Programming, (Berlin, Springer).

[13] KRAFT, D. (1989). TOMP Fortran modules for optimal control calculations, Lehrgang R1.06: Optimierungsverfahren - Software und Praktische Anwendungen,.Carl-Cranz-Gesellschaft, Oberpfaffenhofen, Germany.

[14] LASDON, L.S., MITTER, S.K. WARREN, A.D. (1967). The conjugate gradient method for optimal control problem, IEEE Trans. Aut. Control, 12, 132-138 doi:10.1109/TAC.1967.1098538

[15] LUENBERGER, D.G. (1984). Linear and nonlinear programming 2nd edition, Reading, Mass. Addison-Wesley.

[16] NEWMAN, J.N. (1977). Marine hydrodynamics, Massachusetts, MIT Press.

[17] SPANGELO, I. EGELAND, O. (1992). Generation of energy-optimal trajectories for an autonomous underwater vehicle, Proceedings of the IEEE International Conference on Robotics and Automation, Nice, France, 2107-2112.

[18] SPONG, M. W. VIDYASAGAR, M. (1989). Robot dynamics and control, New York, John Wiley.

**BibTeX:**

@article{MIC-1992-3-4,

title={{Computing energy-optimal trajectories for an autonomous underwater vehicle using direct shooting}},

author={Spangelo, Inge and Egeland, Olav},

journal={Modeling, Identification and Control},

volume={13},

number={3},

pages={163--174},

year={1992},

doi={10.4173/mic.1992.3.4},

publisher={Norwegian Society of Automatic Control}

};