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Computing energy-optimal trajectories for an autonomous
underwater vehicle using direct shooting

INGE SPANGELOt} AND OLAV EGELAND#}

Keywords: ROV, optimal control, nonlinear programming, direct shooting

Energy-optimal trajectories for an autonomous underwater vehicle can be com-
puted using a numerical solution of the optimal control problem. The vehicle is
modeled with the six dimensional nonlinear and coupled equations of motion,
controlled with DC-motors in all degrees of freedom. The actuators are modeled
and controlled with velocity loops. The dissipated energy is expressed in terms of the
control variables as a nonquadratic function. Direct shooting methods, including
control vector parameterization (CVP) are used in this study. Numerical calcul-
ations are performed and good results are achieved.

1. Introduction

The use of energy-optimal trajectories can extend the period of operation for an
autonomous battery powered underwater vehicle significantly by reducing the energy
consumption by about 509, This type of vehicle can be used for underwater inspection
and telerobotics. In certain applications like operation in a cluttered environment it
may be advantageous that the vehicle is untethered, and batteries have to be used for
small vehicles.

Optical control problems can be solved indirectly using the necessary conditions of
optimality (Athans and Falb 1966, Bryson and Ho 1975) and solving the resulting two
point boundary value problem (Keller 1968).

Direct shooting methods (Kraft 1989) belong to the class of vector parameterization
methods (CVP). Using CVP methods the infinite dimensional optimal control problem
is transformed into a finite dimensional nonlinear program. Other CVP methods are
CVP with multiple shooting (Bock and Plitt 1985) and direct collocation (Hargraves
and Paris 1987). Direct shooting is also called CVP with single shooting.

The use of optimal control theory to generate energy-optimal trajectories was
proposed in Spangelo and Egeland (1992). Optimal trajectories were computed
numerically using two different methods, a conjugate gradient method in function
space (Lasdon, Mitter and Warren 1967), and a direct shooting method with finite
difference gradient calculations (Kraft 1989).

In this work, direct shooting has been applied with both numerical (finite difference)
and analytical gradient calculations. Computing analytical gradients calculus of
variation and the resulting costate equations are used (Goh and Teo 1988, Kraft 1985).
The methods were applied to a model of the NEROV vehicle (Fossen and Sagatun
1991) developed at the Norwegian Institute of Technology. Computational results are
presented in the paper.
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2. Energy-optimal trajectories for the NEROV vehicle
2.1. Vehicle model

The equations of motion for an underwater vehicle are written (Fossen and Sagatun
1991, Fossen 1991):

My + C(v+ D) +7(&)=B(v)u 1)

Here M is the 6 x 6 inertia matrix containing vehicle inertia and hydrodynamic added
inertia. The six dimensional vector

v=uovwpqn' (2)

is the velocity in vehicle coordinates where u, v, and w are the linear velocities in the
x, y, and z directions of the vehicle, and p,q and r are the angular velocities about the
vehicle x, y, and z axes of the vehicle. C is a 6 x 6 matrix so that Cv is the vector of
Coriolis, centripetal and hydrodynamic terms according to the theory of ideal fluids. D
is a 6 x 6 matrix containing coefficients describing dissipative hydrodynamic terms. ${&)
is the 6 dimensional vector of restoring forces and moments caused by gravity and
buoyancy. B is the 6 x 6 input matrix.
The vector
E=(xyzg 0y 3)

denotes the global position where x, y and z are the position coordinates and ¢, Oand
are the roll, pitch and yaw angles. Accordingly

E=J@w @
where the Jacobian J(£) is given by

R 0
"=(0 E) ©

R is the 3 x 3 orthogonal rotation matrix (Spong and Vidyasagar 1989)
cycd —spep+cysbsp  sysp+cysbcd
R=R, R, R, o=| s¥c0 cpeh+syslsp ——cisd+sbspcd ©)
—sb clsd cbcd
and E is a 3 x 3 transformation matrix. ¢(*)=cos() and s(-)=sin().
1 s¢sbjch  cPsbfcl
E=|0 «¢¢ —s¢ 7
0 sdjc®  cd/ch

which in general is non-orthogonal. It is assumed that the pitch angle 6 is bounded
by |6] <3 so that E is bounded.
The system can be described in state space form by defining the 12 dimensional state

vector
()
X2

where x, =& and x,=v. This results in the model

%= f(x)+ B(x)u (9
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where
_ J(xy)x,
/ "‘"(M*‘[—C(xz)xz-D{xz)xz—ﬂxl)]) 0
and
0
B‘"=(M-‘3{xz)) i

2.2. Actuator models

The NEROV vehicle has six thrusters driven by DC motors. The DC motors are
equipped with velocity loops using feedback from tachometers, which simplifies the
development of the vehicle control system.

The dynamic model of the DC motor is:

L,,ii,,=—Rﬂ,i‘,,—ZﬂKﬂ,.n+u‘al (12)
dt

d .
21TJ,“J£-H=KMIa—Q (13)

where L, is the armature inductance, R, is the armature resistance, u, is the armature
voltage, K, is the motor torque constant, J,, is the moment of inertia of the motor and
thruster and n is the velocity of the motor in revolutions per second.

A PI velocity loop gives accurate control of the propeller velocity n.

From basic propeller theory it is known that the load torque from the propeller is
given by (Newman 1977)

Q=pD K gfn, v)nin| (149

where p is the mass density of water, D is the diameter of the propeller, and K, is the
torque coefficient of the propeller.
The thrust force is given by

T'=pD*K{n, vjnin| (15)

where K(n,v) is the thrust coefficient. For simplicity we assume that the thrust
coefficients are constant, K.
The control variables are defined by

u,=T,=pD*K hing (16)

where T; is the thrust force of thruster number i.

2.3. Control energy

The dynamics of the armature circuit are assumed to be fast, and in the following
eqn. (12) is approximated by

u,=R,i,+2nK,n (17)
Dissipated electrical power is
P=u,i,=R,iZ+2nK yni, (18)
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The first term on the right-hand side is due to dissipation in the armature resistance,
and the second term denotes the conversion from electrical to mechanical power. The
first term is assumed to be much smaller than the second and is therefore ignored.
s L (19)
¢ K M KM
into the second term of egn. (17) gives
P=(2n)*J .nii+ 2nQn (20)

The first term on the right-hand side is power needed to accelerate the propeller, and
the last term is power dissipation due to the interaction between propeller and water.
Accordingly the following approximation of the mechanical power dissipation is used
for motor i

P,=2n0n,= ZwrpD"’Kanlnil 20
In terms of the control variables this is written
D
p,=2PKe s @)
KT

2.4. Formulation of the optimal control problem (OCP)

The optimal control problem investigated in this paper can be formulated as
follows: Find the trajectory, that is the state and control time histories, which minimize
the performance index

minJ,= j"r L(u)dt= ! _ 61 |u,-(t)|" Sdt (23)
“ 0 0 i=
for the system
%= f(x)+ B(x)u (24)
where the initial and final states are given:
x(to)=xo (29)
x(t)=x, (26)

The time consumption is not critical so a fixed final time is used.

3. Numerical solution of the OCP by direct shooting

The solution of the OCP (eqns. 23-26) gives an open loop trajectory, which has to
be found offline. Generally a numerical method has to be applied for such problems.
This section describes how the problem can be solved by direct shooting, or CYP with
single shooting.

By parameterizing the control vector u(t) the infinite dimensional optimization
problem (23-26) can be approximated by a finite dimensional nonlinear program
(NLP) (see e.g. Kraft 1985):

iy 6

min F(P,)=min (e, P dt (27)
1

Pu to i=
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with constraints
oP)=x(t;)—x,=0 (28)

where P, is a finite set of parameters uniquely defining the controls u(t). Observe that
the constraint equations (28) are not linear in the parameters, and that the state space
equations (24-25) have to be solved each time ¢(P,) is to be found.

The NLP (27-28) can be solved by standard optimization techniques (Gill, Murray
and Wright 1981, Luenberger 1984), giving a suboptimal solution of the optimal
control problem (eqn. 23-26).

Solving an NLP effectively, the gradients and the values of the performance
index and the constraints have to be calculated. The gradients can be calculated
numerically (Kraft 1989, Horn 1990), by finite differences, or analytically by using the
adjoint equations (Kraft 1980, Goh and Teo 1988). The two approaches are both
applied to the NEROV vehicle.

3.1. Parameterization of the control variables
First the time interval [1,,1,] is partitioned into ¢ subintervals

[titier], j=0...q—1.

The breakpoints t; do not necessarily have to be equidistantly distributed, and can
therefore be included in the parameter set P,. In the sequel it is assumed that the
breakpoints are equidistantly distributed, and equal for each control.

In each subinterval [t,¢;, ] the controls ut) are approximated by interpolating
polynomials v,(t). The control approximation functions v, are defined as

vlt, P)=v,(t), te[t;t;y,] (29
and
ot, P)=(v,(t, P,)...o(t, P))" (30)
Eqns. (24-25) are then approximated by
xX= f(x)+B(x)vlt, P,) (E2)]
x(to)= X, (32)

In this work u(t) is approximated by piecewise linear polynomials.

OO) =ty + A " gy (33)

Liv1—t

where u;;=u((t). Alternative interpolation schemes for the control parameterization
are described (Kraft 1989).
A set of 6(g+ 1) parameters are now given

Po=(U10, U115 sllygpennnnnnnn.. JUgg) (34)

The resulting finite-dimensional optimization problem can be arbitrarily close to the
optimal control problem (eqn. 23-26) by choosing a large size for the parameter set. The
choice of a sensible size is discussed in the computational study in the next section.
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3.2. Numerical gradient calculation
The gradients can be calculated numerically by forward differences

_ﬁc&)=c,(u,0,...,uﬂ+hp,-,-,...,u6q)—c*(P,,} 35)
ouy; hp;;
where
(Co---e--- cn)' =(F ' (36)

m is the number of constraints. Consequently the state space equations have to be
solved 6(g+ 1)+ 1 times for each iteration to find the gradients in the NLP (27-28). The
hp,;’s (the perturbation sizes) were calculated as proposed by Kraft (1989), based on the
analysis in Horn (1990)

i) d
hpij=max {Es qulﬁasl;z} (37)

where & is the global accuracy of the initial value problem solver (NODE), and
approximately equals the optimization convergence criteria. ¢ is the machine precision.
It was shown in Horn (1990) that almost the same accuracy asin the NODE-solver can
be achieved in the gradient calculation, provided that approximately the same
timesteps are used for the unperturbed and the perturbed simulations. The 4th order
Runge-Kutta method RK4 with constant timesteps was chosen as NODE-solver, in
which case this timestep requirement is automatically satisfied. A general discussion on
using finite-difference approximation to gradients in optimization is given in Gill,
Murray and Wright (1981). The 4th order Simpson’s rule was used in integrating the
performance index.

3.3. Analytical gradient calculations

By using the adjoint equations the gradients can be calculated without using the
forward-difference scheme.

Observe first that the performance index (eqn. 27) does not depend on the states,
and consequently not on the state space equations. It is therefore easily seen that

SF(P,)= r %&: dt (38)

where 8F(P,) and éu is the first variation of F(P,) and u respectively w.r.t. the
parameters. L(u) is defined in eqn. (23). This gives for the partial derivatives

oFP,) [ oL(u) Oy,

S| ot 39)

auij o au! aui‘ (
where v, is defined in eqns. 29 and 33, and y; denotes control number i. From eqn. (23)
0L(u)
du:

=15 sign (uM|u))''? (40)

The equality constraints (eqn. 28) are given by the end time constraints in eqn. (26).
Consequently the state space equations have to be included in the derivation of the
derivatives of ¢(P,) w.r.t. the parameters. This was done in the following way (Further
discussions and proofs can be found in (Kraft 1980) or (Goh and Teo 1988)).
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Consider the individual constraints ¢,(P,) as Mayer types of objett functionals:

Jo=dulx(ty) “n

Then proceed in the usual way to find the first variation of J,, w.r.t. the control vector
(Athans and Falb 1966, Bryson and Ho 1975). Define a Hamilton function

H,, (u)=4; f(x,u) (42)

for each of the constraints ;. The first variation of J,, is given by

(] 1
81, = I Pl J " 1T Bx)oudt 43)
to Ou t
where
__Of(xw)"
Joy= = =514, (44)
and
(t)=24t) 4s
Aolt)=— "1y (45)
The gradients of the constraints are now given by eqn. (43).
dey, I v dv;
o 'o(;'ch( ) B (46)

Consequently, each time the gradients of the constraints are to be calculated one has to
solve m sets of adjoint equations, where m is the number of constraints.

For this optimal control problem the adjoint equations had to be solved 12 times,
each with different boundary conditions. Alternatively the end time constraints
(eqn. 26) can be reformulated as a quadrature (Goh and Teo 1988):

c=(x(ty)—x, ;)T(x(t )—x _f) @7

The number of constraints are then reduced to one, at the cost of increasing the
nonlinearity. These two different ways of handling the constraints were compared, and
the results are given in the next section.

4. Computational study

A numerical study was done for a coupled surge and sway motion on the NEROV
vehicle. The tests were made on a SUN 4/75 station. The computational effort in terms
of CPU seconds and the value of the converged performance index were compared for
the two approaches of gradient calculations, and for different numbers of parameters.
In the case of analytical gradient calculations the constraints were handled both as
plain end-time constraints and as an error quadrature (eqn. 47).

A sequential quadratic programming subroutine (Kraft 1989) was used to solve the
nonlinear program (27-28). A convergence criteria acc of 001 was chosen, which meant
that the L1-norm of the constraint violations had to be less than 0-01. The RK4 NODE-
solver and Simpson’s rule of integration are both of 4th order, which means that they
have a global accuracy proportional to h* where h s the step length of integration. The
exact value of the global accuracy is difficult to find, but after some tuning effort using
numerical gradient calculations a step length h=0-25 was chosen, which appeared to
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keep the global accuracy safely below acc. Based on the discussion in the last section,
and after some tuning effort the forward-difference perturbation in the numerical
gradient calculation was chosen as (see eqn. n

hS

4.1. Vehicle model parameters

The hydrodynamical parameters for the NEROV vehicle were found in Fossen
(1991).
The inertia matrix was assumed to be diagonal:

M=diag {m—Xg,m—Y,,m—Z,,1.—K,,[,—M,, I,—N,} 49)
The mass is m=185kg. The moments of inertia around the x, y and z axes are
1,=25kgm?, I,=29kgm? and I,=28kgm?. The hydrodynamic added inertias are
X,=—30kg, Y,=—110kg, K,=—15kgm? M,= —20kgm? and N;= —1kgm?.
The matrix C was set to zero.
The drag matrix D was also assumed to be diagonal with diagonal

D(v)=diag{80+ 120]ul, 110 +200v, 100+ 150w,

30+ 50ipl, 40+ 40|, 10+ 15|r]} (50)
The restoring moments were found to be
y=(0 0 0 zzBcscp zzBs6 O)F (51)

where z;=004m is the z-coordinate of centre of buoyancy and B=1800N is the
buoyancy, which is equal to the weight mg of the vehicle.
The thruster configuration of NEROV results in the control matrix

11t 0 0 0 ©
0 0 —1 0 0

g |00 0 0 11 o
00 I, -, 0 ©
00 0 0 —lI I

L L 0 0 0

=]

where it is assumed that all thrusters have the same K value, and that it is constant.
I, (i=1,2...6) are the thruster offsets giving 2 moment arm. Numerical values are:
Il =,2 =0'4m, 13 =0'21 m, I4=0'02m al'ld ,5=16=0'43 m.

4.2. Coupled surge and sway motion

A motion increment of 5 min 10 s in the initial surge and sway direction was studied.
The initial state was

x(0)=0 (53)
and the final state was
x(10)=(550000000000)T (54)
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# par J* #iter  #fc to. CPU  sqp CPU gc CPU
NG 11 12-58 % 103 18 27 65 1-6 21
NG 9 12:69 x 103 13 20 35 09 1-8
NG 6 1287 x10° 8 9 11-7 03 1-2
NG 5 1300 x 10° 8 8 95 02 1-1
NG 3 14-40 % 10? 4 4 43 007 07
NG 2 2612 x 103 4 4 19 003 05
AG 11 12-58 x 10° 18 27 42 16 07
AG 9 12-60 x 10° 17 23 29 09 07
AG 6 12:87 x 103 8 9 81 03 07
AG 5 1296 x 10 10 15 87 02 o7
AG 3 14:39 % 103 6 6 4-5 007 07
AG 2 26112 % 103 4 4 26 003 07
QAG 11 1223 x 102 21 39 29 12 0-07
QAG 9 12-14 x 10? 21 39 18 07 007
QAG 6 1218 x 103 25 49 104 0-25 007
QAG 5 12-31 x 10? 24 48 78 017 007
QAG 3 1334 x 10° 27 55 58 004 007
QAG 2 16:59 x 103 29 57 53 0-02 007

Table 1.

Table 1 shows computational results using numerical gradient calculation (NG),
analytical gradient calculations and plain constraints (AG), and analytical gradient
calculations and error quadrature (QAG). The computations were done with different
numbers of parameters. The converged performance indexes are shown in the third
column. The differences between plain constraints and error quadrature for the same
number of parameters can partly be explained by the fact that the boundary conditions
are treated differently, and should therefore not be given too much importance.
Columns four and five show the numbers of iterations and function calculations,
respectively. A function calculation consists of computing the performance index and
the constraint violations. The computing efforts in terms of CPU seconds are shown in
the three last columns of Table 1. The total CPU-time is shown in the fifth column. The
last two columns show the CPU-time spent each time a new search direction was
calculated in the SQP, and a gradient calculation was done, respectively. A gradient
calculation consists of computing the performance index gradient and the constraint
Jacobian matrix. The CPU time spent when a function calculation was done was ca.
0-05 seconds in all cases, and is not shown in Table 1.

Theoretically the results (converged performance index and the numbers of
iterations and function calculations) should have been the same for AG and NG, but
there were some differences, probably due to numerical reasons. In the case of 5
parameters the calculations with AG were performed with half step length (h=0-125)in
the integrators, which gave results that were much closer to NG (the same numbers of
iterations and functions calculations). The NG method therefore seems to be more
accurate than AG.

In all tests all the parameters were initially chosen to be zero.

The choice of an optimal number of parameters is a compromise between total
CPU-time effort and performance index. It is seen from Table 1 that in the case of
numerical gradient calculations the converged performance index with five parameters
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Figure 1. Computed optimal trajectories.
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Figure 2. Computed optimal thrusts.

is only ca. 3% higher than with eleven parameters, whereas the total CPU-time effort is
only ca. 15%. More than 5 or 6 parameters seem to be unnecessary.

It is seen from Table 1 that when the number of parameters becomes large, QAG is
considerably faster than AG which on the other hand is considerably faster than NG.
When the number of parameters is moderate (5 or 6) the different approaches do not
differ much in total CPU-time consumption. The NG approach uses a bit more CPU-
time, but on the other hand it is more accurate with the chosen integration step time.




Energy-optimal trajectories 173
250 s ,
A S Tua j
s ) Y 41 . , ..............
100} S - /

(a) ®

Figure 3. Computed heuristic thrusts and trajectories.

Another very important argument in favour of the numerical approach is the higher
flexibility because one does not need the adjoint equations.

With simple boundary conditions as constraints only a couple of iterations are
needed before the performance index is higher than the converged, while with the
quadrature it increases slowly until convergence. This is because in the former case the
SQP quickly finds the manifold of feasible solutions, while in the latter case this is
difficult. This results in a higher number of iterations when the error quadrature
representation of the end-time constraints is used.

Optimal trajectories and optimal controls computed with the NG-method and with
five parameters are shown in Figures 1-2.

Finally a heuristic trajectory was computed. A solution with quadratic velocity
profiles in the x and y directions was used. The resulting controls are shown in Fig. 3 (a).
The acceleration (a), velocity (v) and the trajectory (p) are shown in Fig. 3(b). The
resulting performance index was J,=24-88 x 10*, which is almost twice the optimal
solutions that were computed.

5. Conclusions

A significant reduction in the energy consumption (ca. 50%) can be achieved by
using optimal control for an autonomous underwater vehicle. Energy minimization for
such vehicles implies the solution of an optimal control problem with nonlinear state
space equations and nonquadratic performance index.

A control vector parameterization method with single shooting has been tested.
Two different numerical approaches for computing gradients were tried, numerical
differentiation with forward-differences and an analytic one including the adjoint
equations of the system. In the latter case the end-time constraints were treated in two
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different ways, as plain constraints and as an error quadrature. A piecewise linear
parameterization of the control was used and different numbers of parameters were
tried. With a moderate number of parameters none of the approaches seemed to be
superior. The numerical gradient calculation scheme was a bit slower, but more
accurate than the two analytical gradient calculation schemes.

In the future we plan to test other numerical methods, primarily trying to reduce the
CPU-time effort, and apply it in physical experiments. We will also solve more
complicated problems like collision avoidance.
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