“State-space predictive control”

Authors: Jens G. Balchen, Dag Ljungquist and Stig Strand,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1992, Vol 13, No 2, pp. 77-112.

Keywords: Predictive control, state-space methods, non-linear control system, optimal control, iterative methods, on-line operation, catalytic cracking

Abstract: This paper deals with a predictive control strategy based on state-space models. Important issues concerning inherent model identification and optimal control computation are briefly discussed. Predictive control relies heavily on a model with satisfactory predictive capabilities. An off-line identification procedure must be accomplished to obtain a proper model structure and a parameter set, which is required for on-line adjustment. The control calculation is based on a general performance index and parameterization of the control variables in a nonlinear model, which includes the relevant constraints. This results in a finite-dimensional optimization problem which can be repetitively solved on-line. Simulation studies on two very different, typical industrial processes are presented. The simulations show that this MPC technique offers a major improvement in the control of many industrial processes.

PDF PDF (4610 Kb)        DOI: 10.4173/mic.1992.2.2

DOI forward links to this article:
[1] David Di Ruscio (2013), doi:10.4173/mic.2013.3.2
[2] J.A. Sørlie (1994), doi:10.1016/S1474-6670(17)47800-1
[1] BALCHEN, J.G., LJUNGQUIST, D. STRAND, S., (1988). Predictive control based upon state space models, Proceedings of the 1988 ACC, 3, 2174-2179.
[2] BALCHEN, J.G., LJUNGQUIST, D. STRAND, S. (1989). State space predictive control of a multistage electrometallurgical process, In Proceedings of the IFAC Workshop on Model Based Process Control, Atlanta, Georgia, June 1988, pp. 47-53.Pergamon Press, Oxford.
[3] BALCHEN, J.G. MUMMÉ, K.I. (1988). Process Control: Structures and Applications, pp. 369- 75.Van Nostrand Reinhold, New York.
[4] BIEGLER, L.T. (1984). Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation, Comput. Chem. Engng., 8, 243-248 doi:10.1016/0098-1354(84)87012-X
[5] BIERMAN, G.J. (1977). Factorization Method for Discrete Sequential Estimation, Academic Press, New York.
[6] BOCK, H.G. (1983). Recent advances in parameter identification techniques for ODE, In Numerical Treatment of Inverse Problems in Differential and Integral Equations, edited by P. Deuflhard and E. Hairer, pp. 95-121.Birkhäuser, Boston.
[7] BOCK, H.G. PLITT, K.J. (1985). A multiple shooting algorithm for direct solution of optimal control problems, In Proceedings of the 9th Triennial World Congress of IFAC, Budapest 1984, Vol. 3, pp. 1603-1608.Pergamon Press, Oxford.
[8] BROMLEY, J.A. WARD, T.J. (1981). Fluidized catalytic cracker control: A structural analysis approach, Ind. Engng. Chem. Process Des. Dev., 20, 74-81 doi:10.1021/i200012a011
[9] CUTHREL, J.E., BIEGLER, L.T. (1987). On the optimization of differential-algebraic process systems, A.I.Ch.E. J., 33, 1257-1270 doi:10.1002/aic.690330804
[10] CUTLER, C.R. RAMAKER, B.L. (1979). Dynamic matrix control - a computer control algorithm, AIChE 86th National Meeting. Houston, TX, April 1979.
[11] DORMAND, J.R. PRINCE, P.J. (1980). A family of embedded Runge-Kutta formulae, J. Comput. appl. Math., 6, 19-26 doi:10.1016/0771-050X(80)90013-3
[12] DURAN, M.A. GROSSMANN, I.E. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs, Math. Frog., 36, 307-339 doi:10.1007/BF02592064
[13] EDGE, E.R. POWERS, W.F. (1976). Function-space quasi-Newton algorithms for optimal control problems with bounded controls and singular arcs, J. Optimization Theory Applic., 20, 455-479 doi:10.1007/BF00933131
[14] ERRAZU, A.F., DELASA, H.I. SARTI, F. (1979). A fluidized bed catalytic cracking regenerator model, grid effects, Can. J. chem. Engng., 57, 191-197.
[15] FLOUDAS, C.A., AGGRAWAL, A. CIRIC, A.R. (1989). Global optimum search for nonconvex NLP and MINLP problems, Comput. Chem. Engng, 13, 1117-1132 doi:10.1016/0098-1354(89)87016-4
[16] GELB, A. (1974). Applied Optimal Estimation, The Analytic Science Corporation, MA.
[17] GILL, P.E., MURRAY, W., SAUNDERS, M.A. WRIGHT, M.H. (1983). User´s guide for SOL/NPSOL: a Fortran package for nonlinear programming, Technical Report SOL 8312. Department of Operations Research, Stanford University, California.
[18] HERNANDEZ, E. ARKUN, Y. (1990). Neural network modeling and an extended DMC algorithm to control nonlinear systems, In Proceedings of the 1990 ACC, pp. 2454-2459.
[19] HICKS, R.C., WORELL, G.R., DURNEY, R.J. (1966). Analog-digital cat-cracking-model development, Oil Gas J., 64, 97-105.
[20] HUANG, Z., SAPRE, A.V. TSILIGIANNIS, C. (1989). Dynamic modeling and control of fluidized catalytic cracking units, AIChE Annual Meeting, paper 22c, San Francisco, November 1989.
[21] ISLES-SMITH, P.C. (1985). A study of the modeling, dynamic simulation and control of the modern fluid catalytic cracking process, Ph.D. thesis, University of Leeds.
[22] JANG, S.S., JOSEPH, B. MUKA, H. (1987). On-line optimization of constrained multivariable chemical processes, A.I.Ch.E. J., 33,26-35 doi:10.1002/aic.690330105
[23] JAZWINSKI, A.H. (1970). Stochastic Processes and Filtering Theory, Academic Press, New York.
[24] JOSEPH, B., JANG, S.S. MUKAI, H. (1989). Integrated model based control of multivariable nonlinear systems, In Proceedings of the IFAC Workshop on Model Based Process Control, Atlanta, Georgia, June 1988, pp. 121-128.Pergamon Press, Oxford.
[25] KELLEY, H.J. (1962). Method of gradients, in Optimization Techniques, edited by G. Leitman.Academic Press, New York.
[26] KURIHARA, H. (1967). Optimal control of fluid catalytic cracking processes, MIT Electric System Laboratory Report ESL-R-309.
[27] LASDON, L.S. (1970). Conjugate direction methods for optimal control, IEEE Trans. Autom. Control, 15, 267 268 doi:10.1109/TAC.1970.1099440
[28] LASDON, L.S., MITTER, S.K. WAREN, A.D. (1967). The conjugate gradient method for optimal control problems, IEEE Trans. Autom. Control, 12, 132-138 doi:10.1109/TAC.1967.1098538
[29] LEE, E. GROVES, F.R.Jr. (1985). Mathematical model of the fluidized bed catalytic cracking plant, Trans. Soc. Comput. Sim., 2, 219-236.
[30] LEE, W. WEEKMAN, V.W.Jr. (1976). Advanced control practice in the chemical process industry: a view from industry, A.I.Ch.E. J., 22, 31-34 doi:10.1002/aic.690220103
[31] LJUNG, L. (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE Trans. Autom. Control, 25, 36-50 doi:10.1109/TAC.1979.1101943
[32] LJUNG, L. (1987). System Identific:ation, Theory for the User, Prentice-Hall. Englewood Cliffs, NJ.
[33] LJUNGQUIST, D. (1990). Online estimation in nonlinear state-space models with application to catalytic cracking, Dr. Ing. thesis. Report no. 90-89-W, Division of Engineering Cybernetics, NTH, Trondheim.
[34] LUYBEN, W. LAMB, D.E. (1963). Feed-forward control of a fluidized catalytic cracker reactor-regenerator system, Chem. Engng. Prog. Symp. Ser., 59, 165.
[35] MAYBECK, P.S. (1979). Stochastic Models, Estimation and Control 1, Academic Press, New York.
[36] MAYBECK, P.S. (1982). Stochastic Models, Estimation and Control 2, Academic Press, New York.
[37] MORARI, M. LEE, J.H. (1991). Model predictive control: the good, the bad, and the ugly, Preprints of CPC IV, Fourth International Conference on Chemical Process Control, 17-22 February 1991, South Padre Island, TX.
[38] NEUMAN, C.P. SEN, A. (1973). A suboptimal control algorithm for constrained problems using cubic splines, Automatica, 9, 601-613 doi:10.1016/0005-1098(73)90045-9
[39] NØRSETT, S.P. THOMSEN, P.G. (1987). User Guide for SIMPLE - a Stiff System Solver, Division of Numerical Math., NTH, Trondheim.
[40] PATWARDHAN, A.A., RAWLINGS, J.B. EDGAR, T.F. (1988). Model predictive control of nonlinear processes in the presence of constraints, AIChE Annual Meeting, Session 129, paper 129b.Washington, D.C.
[41] PETERSON, T., HERNANDEZ, E., ARKUN, Y. SCHORK, F.J. (1989). Nonlinear predictive control of a semi batch polymerization reactor by an extended DMC, In Proceedings of the 1989 ACC, Pittsburgh, PA, pp. 1534-1539.
[42] POLJAK, B.T. TSYPKIN, J.Z. (1980). Robust identification, Automatica, 16, 53-63 doi:10.1016/0005-1098(80)90086-2
[43] PONTRYAGIN, L.S., BOLTIANSKII, V.G., GAMKRELIDZE, R. V. MISHCHENKO, E.F. (1962). The Mathematical Theory of Optimal Processes, Wiley, New York.
[44] QUINTANA, V.H.. DAVISON, E.J. (1974). Clipping-off gradients algorithms to compute optimal controls with constrained magnitude, Int. J. Control, 20,243-255 doi:10.1080/00207177408932734
[45] RENFRO, J.G., MORSHEDI, A.M. ASBJORNSEN, O.A. (1987). Simultaneous optimization and solution of systems described by differential/algebraic equations, Comput. Chem. Engng, 11, 503-517 doi:10.1016/0098-1354(87)80025-X
[46] RHEMANN, H., SCHWARZ, G., BADGWELL, T.A., DARBY, M.L., WHITE, D.C. (1989). On-line FCCU advanced control and optimization, Hydrocarb. Process., 68, 64-71.
[47] RICHALET, J.A., RAULT, A., TESTUD, J.D. PAPON, J. (1978). Model predictive heuristic control: applications to industrial processes, Automatica, 14, 413-428 doi:10.1016/0005-1098(78)90001-8
[48] SARGENT, R.W.H. SULLIVAN, G.R. (1978). The development of an efficient optimal control package, In Optimization Techniques, Proceedings of the 8th IFIP Conference on Optimization Techniques edited by J. Stoer, Wurzburg, 1977.Springer, Berlin.
[49] SCHITTKOWSKI, K. (1985). NLPQL: a Fortran subroutine solving constrained nonlinear programming problems, Operations Res. Ann., 5, 485-500.
[50] SCHMID, C. BIEGLER, L.T. (1990). Application of multistep Newton-type controllers to fluid catalytic cracking, In Proceedings of the 1990 ACC, pp. 581-586.
[51] SCHULDT, S.B. SMITH, F.B.Jr. (1971). An application of quadratic performance synthesis techniques to a fluid cat cracker, Joint Automatic Control Conference paper 3-E4, St. Louis, MO, pp. 270-276.
[52] SHAH, Y.T., HULING, G.P., PARASKOS, J.A., MCKINNEY, J.D. (1977). A kinematic model for an adiabatic transfer line catalytic cracking reactor, Ind. Engng. Chem. Process Des. Dev., 16, 89-94 doi:10.1021/i260061a015
[53] SISTU, P.B. BEQUETTE, B.W. (1990). Process identification using nonlinear programming techniques, In Proceedings of the 1990 ACC, pp. 1534-1539.
[54] STRAND, S. (1991). Dynamic optimization in state-space predictive control schemes, Dr. Ing. thesis. Report 91-11-W, Division of Engineering Cybernetics, NTH, Trondheim.
[55] STRAND, S. BALCHEN, J.G. (1990). A comparison of constrained optimal control algorithms, Preprints of the 11th IFAC World Congress, 6, pp. 191-199, Tallinn, USSR.
[56] TRIPATHI, S.S. NARENDRA, K.S. (1970). Optimization using conjugate gradient methods, IEEE Trans. autom. Control, 15,268-270 doi:10.1109/TAC.1970.1099402
[57] TSANG, T.H., HIMMELBLAU, D.M. EDGAR, T.F. (1975). Optimal control via collocation and nonlinear programming, Int. J. Control, 21, 763-768 doi:10.1080/00207177508922030
[58] VLASSENBROECK, J. VAN DOOREN, R. (1988). A Chebyshev technique for solving nonlinear optimal control problems, IEEE Trans. Autom. Control, 33, 333-340 doi:10.1109/9.192187
[59] WEEKMAN, V.W., Jr. NACE, D.M. (1970). Kinetics of catalytic cracking selectivity in fixed, moving and fluid bed reactors, A.I.Ch.E. J., 16, 397-404 doi:10.1002/aic.690160316
[60] WIENER, N. (1942). The extrapolation, interpolation and smoothing of stationary time series, NDRC Report Cambridge, MA.

  title={{State-space predictive control}},
  author={Balchen, Jens G. and Ljungquist, Dag and Strand, Stig},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}