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This paper deals with a predictive control strategy based on state-space models.
Important issues concerning inherent model identification and optimal control
computation are briefly discussed. Predictive control relies heavily on a model with
satisfactory predictive capabilities. An off-line identification procedure must be
accomplished to obtain a proper model structure and a parameter set, which is
required for on-line adjustment. The control calculation is based on a general
performance index and parameterization of the control variables in a nonlinear
model, which includes the relevant constraints. This results in a finite-dimensional
optimization problem which can be repetitively solved on-line. Simulation studies
on two very different, typical industrial processes are presented. The simulations
show that this MPC technique offers a major improvement in the control of many
industrial processes.

1. Introduction

Model-based predictive control methods have been the subject of intensive research
for about 10-15 years. However, these methods have much longer history. Model-
based prediction was one of the main concepts introduced by Wiener (1942) nearly 50
years ago. The Pontryagin maximum principle developed in the mid-1950s (Pon-
tryagin et al. 1962) is an elegant mathematical solution to model-based predictive
control. Nevertheless industrial applications have come slowly, mainly because the
required computing capacity was not available at an acceptable price until about 15
years ago. This enabled established theoretical solutions to be given practical
realizations even though many of the basic results were ‘reinvented’ by contributors
who had not studied the available literature too thoroughly.

It is a widely-accepted fact that only the future behaviour of a process can be
controlied. The present state of a system is the end of the past. Future behaviour will be
governed by three dominating phenomena:

e the autonomous system behaviour
o future independent external disturbances
@ future control actions.

System responses belonging to the first category can be predicted using a dynamic
model of the system and the more precise the model is, the better the predictions.
Predicting future disturbances is more difficult and can be done in two ways: either by
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direct measurement of a phenomenon, which produces the disturbance after some
delay; or by estimating the disturbance based upon a model of its basic phenomena. An
example of the measurement of a phenomenon which is delayed is a transportation lag
(in pipeline or transportation facility) bringing material into a process from a remote
location where a measurement is made. Another type of predictable disturbance is a
cyclic one which is relatively easy to estimate using a model of the cyclic process. Future
control actions present no difficulty since they are being generated by the control
system itself.

When designing model-predictive control systems, an important issue is related to
the choice of model representation. Some of the available products from control
vendors utilize input—output models in the form of step-response matrices, impulse-
response matrices etc. (Richalet et al. 1978; Cutler and Ramaker, 1979). Since these are
linear descriptions, the unconstrained predictive control then will be a linear
approximation. In fact it can easily be shown that a predictive control system based
upon a linear model and a least-squares predictive control towards a prescribed
trajectory is totally equivalent to LQ control (linear/quadratic-optimal control). This
matter is further discussed by Morari and Lee (1991), and in the papers referred there.

When a process is highly nonlinear and both control and state variables are subject
to constraints, a state—space description is preferable for the system model. Most
dynamic processes can be modeled in state-space, and the number of parameters
necessary to describe a certain set of phenomena, can become much smaller when this
type of description is used rather than an input-output description. Furthermore, when
a state—space model is employed in a general dynamic optimization scheme, it is
possible to determine the future control actions which are optimal in terms of any
performance criterion. In process control the objective will most often be maximization
of the net profit. Moreover the close relationship between the model and the real plant
makes a state-space predictive control system conceptually simple and appealing to
process operators because the predicted physical quantities corresponding to the
computed control variables can be displayed to them.

There is a growing interest in the use of nonlinear state-space models in model-
predictive control. Peterson et al. (1989) and Hernandez and Arkun (1990) propose to
use such models to calculate improved step responses when DMC is applied to
processes with highly nonlinear dynamics. Schmid and Biegler (1990) demonstrate the
advantage of using a multistep Newton-type controller rather than QDMC in
controlling a simulated FCC unit. This algorithm can be regarded as one of the many
possible methods for solving nonlinear optimal control problems. The application of
nonlinear state-space models in predictive control has been proposed also by Jang
et al. (1987), Joseph et al. (1989), Sistu and Bequette (1990), Balchen et al. (1988, 1989)
and Patwardhan et al. (1988).

A model-based predictive control method will now be outlined which has the above
properties. Its application will be demonstrated on two very different processes:

e the FCC for the production of light hydrocarbons from a heavy feed stock and
e the production of a light metal by electrolysis in a large number of units
connected is series.

The first of these processes is a highly nonlinear process with very strong cross-
couplings; thus a constant ordinary control agorithm does not perform satisfactorily.
The latter is highly constrained, very interconnected, nonlinear and with partly
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discontinuous control actions. Ordinary linear control-theory based systems have little
to offer for this process.

The following presentation starts with a description of the SSPC scheme, which
highlights the order of the involved computations. The model identification and
dynamic optimization issues are very essential for the performance of the proposed
controller, and have been focused in two doctoral theses (Ljungquist, 1990; Strand,
1991). These parts will be elaborated in some detail in the subsequent sections of this
paper. Then the two simulation studies with some illustrating results will be presented.

2. Controller description

The goal of this section is to provide a description of the main functions performed
by the SSPC system of Fig. 1. Details of the model identification and inherent open-
loop optimal control issues are discussed in later sections.

The moving horizon concept illustrated in Fig. 2 is common to all predictive
controllers. Figure 2 also shows some features which are specific for the proposed SSPC
system. It is supposed that the time 8t is needed to solve the open-loop optimal control
problem. This can be longer than the sample time 7 of the process control system. The
relationship &t=3z is indicated in Fig. 2. An efficient way to solve the open-loop
optimal control problem is to parameterize the control variables, for instance as a
piecewise linear function as shown in Fig. 2. This means that quite a few parameters are
needed to get a satisfactory resolution of the control variables. The implemented
control can naturally be piecewise constant (discretized) if this is a convenient
representation.
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Figure 1. Schematic SSPC overview.
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Figure 2. Control calculation in SSPC,

If the model provides a very good description of the real process in the frequency
domain of interest, the control variables that result from the dynamic optimization can
be used unmodified, or discretized as in Fig. 2. This is also true if the time interval 6t is
very small compared to the desired closed-loop response times, either due to a slow
process or high computing capacity. In the general case, however, it is preferable to
include feedback around the optimized state trajectories. This is expressed by a
feedback matrix G in the following presentation.

Let M (t;t') be defined as the estimated (real-time) state-space model at time t’,
while M (t;¢') is the corresponding predictive optimization model. Available dis-
turbance predictions are included in these models. It may sometimes be advantageous
to let M, have a simpler structure than M, when this can speed up the optimization
computations so that ét can be reduced. Both models can be used to predict dynamic
responses due to manipulation of control variables when initial state variables have
been specified.

With reference to Fig. 2, suppose that the nominal control and state trajectories
u°(t; t,) and x°(t; 1) are available at real time t,,. They are the solutions of the open-loop
optimal control problem with initial horizon time t,.

2.1. Computation of nominal solutions from future time ty+ ot

The following functions are performed during the real-time interval (t; t,+ 6t) in
order to have solutions u°(t; ¢, + 6t) and x°(t; ¢, + 6t) available at real time z,+ 5t

e Update the real-time model at time t,, by use of the available process
measurements. This gives M (z; 1) and the state estimate %(t).
e Predict the initial state variables x(t,+ 6¢;t,) for the subsequent optimization:

R(to), M At; to), tglt; Lo)—X(to + Ot; 1) 1)
ut; to)=u3(t; to)+ GLX(L; to) — x°(t; to)] )
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u3(t; to) is the discretized version of u%(t; t,), and Eqn. (2) is calculated at discrete time
instants corresponding to the future sampling instants of the process control system.

The feedback matrix is used in the initial state prediction because it will also be used
in the control of the real process for the same time interval. It has an effect because the
model M, has been updated (three times in Fig. 2) since the computation of x°(t; ¢,).

e Solve the open-loop optimal control problem with initial horizon time t,+ dt:

X(to +0t; to), M (t; o) = u’(t; to + 8t), x(t; o + 6t) )
u’(t; to+ 01), M (t; 1) > xAt; to + 61) @

The dynamic optimization is performed in Egn. (3). The function of Egn. {4) is not
needed if the models M, and M, are identical. If they are structurally different it may
happen that the mismatch between the state responses in Eqns (3) and (4) is so large that
the present structure of M, should be reconsidered when process conditions change.

2.2. Control of the process during the real-time interval (t,, ty+ 0t)

The operations listed above must be finished or interrupted at real time £, + 6t. In
the meantime, the process is controlled by the following operations performed at each
sampling instant t,+iz, i=0, 1, 2 (when t=131).

e Update the real-time model by use of the process measurements, which gives
M (t;ty+i7) and x(t,+it)
e Implement the discretized control u/t,+ it; t,) according to

Uty + it to) =u(to +it; to) + G[£(to +it)— x°(to +it; t0)] (5)

2.3. Comments on the control calculations

The computation of the feedback matrix G in Eqns (2) and (5) is based on the
available model and the precomputed nominal trajectories. It is also possible to adapt
the structure to the actual active constraints. This matter is further discussed by Strand
(1991).

The usual practice in process control is to measure the plant response and then
calculate the control actions, giving a dead time in the feedback loop. When the involved
computational load is modest, as for instance when PID-controllers are used, this dead
time will usually not contribute significantly to the negative phase angle. However, the
control calculations in the dynamic optimization part of the SSPC scheme are so time
consuming that the controller dead time would degrade the control quality. Starting
the optimization at a time interval 8t in the future in order to be finished when real time
has advanced that interval, does not remove the problem. However, the better the
model, the less the error in the initial states prediction.

The nominal control actions and responses for the time interval g+ 6t to o+ 25t
are calculated by the model that is available at time t,,. In the worst case, this leads to a
time delay of 24t from an abrupt process change till this knowledge is included in the




82 J. G. Balchen et al.

optimization. This indicates why a control correction with faster sampling rate is often
necessary. If a severe process change is recognized, it will probably be advantageous to
start a new optimization immediately, using old nominal control actions with
correction till the nominal controls based on the fresh knowledge are available. This
gives a maximum time delay of &t for severe changes to be accounted for by the nominal
controls.

3. Model identification

MPC techniques rely on a model which has satisfactory predictive capabilities,
defining the goal of the identification procedure. This procedure has to be divided into
two separate parts; off-line and on-line identification. The following subjects are dealt
with in off-line experiments:

e choice of model set and model structure;

e determination of reasonable model parameters;

e definition of a parameter set to be adjusted on-line;

e choice of an identification algorithm to be used for the on-line identification.

As already mentioned the most suitable process description to be used in an MPC
scheme is the nonlinear state-space model. The state-space model is established using
physical knowledge, but allows for inclusion of input/output models of poorly known
process parts. Disturbances may be modeled based on physical insight and represented
in the model by state variables, or they may be represented by time-varying parameters.

Finding a set of parameters which makes the model fit the process measurements, is
often referred to as an ‘inverse problem’. However, in most cases this is an ill-posed
problem because the number of parameters is usually too large to be uniquely given
from the process measurements. One of the important features of a state—space model
developed from “first principles’ is that most of the model parameters are either given,
or reasonable values can be found from physical considerations. The number of
unknown parameters is then reduced to a minimum. Once the set of unknown
parameters is decided, off-line experiments can be designed to maximize the
identifiability of these parameters. It is beyond the scope of this paper to give details on
this subject. Such work is available elsewhere [e.g. Ljung (1987)].

When the model structure and the set of unknown parameters are given, the best
model within this model set is usually defined by the parameter combination which
minimizes some norm of the difference between the process and model measurements.
A quite general formulation of this minimization problem which is referred to as an
estimation problem, is:

Oy=argmin Vy(¢)=argmin ! i I[e(k)] (6)
0eDys oepy N =1
where
e(k)=y(k)— ym(k)
Yulk)=g[X(k, ), 0]
x(k, 6)=[X(k—1),6]
(k) =x(k) + K (k)e(k)
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and

] vector of parameter estimates, dimension p

Oy optimal vector of parameter estimates, dimension p

Dy  connected, open subset of R”

Vi{e) error norm/minimization criterion

N number of samples used in the minimization

i) a scalar valued positive function

glk)  vector of prediction errors, dimension m

k discrete time

y(k)  vector of process measurements, dimension m

Vuk) vector of model measurements, dimension m

g()  vector of nonlinear measurement functions, dimension m
x(k)  vector of a priori state variable estimates, dimension n
@) vector of discrete state propagation functions, dimension n
X(k)  vector of a posteriori state variable estimates, dimension n
K (k) state update matrix.

The control variables are suppressed in the expression above. It should be noted
that the discrete state propagation vector @() does not have to be computed
analytically. Application of first principles will usually result in a nonlinear state-space
model of the form:

d
5 =01 )

where, f(.)is a vector of nonlinear functions and u is the control vector. This continuous
modelis simulated from k— 1 to k using an ordinary differential equation (ODE) solver.
The discrete form in Eqn. (6) is used because most process measurements are discrete by
nature.

Clearly, the number of samples used in Egn. (6) will influence the maximum number
of parameters which can be identified. Moreover the time variation of the process
inputs, ie. the control variables and the measurable disturbances, are of vital
importance. In fact the control variables should be designed to maximize the
identifiability of the model parameters in the off-line experiments.

The quadratic error norm given by

le)=¢"€ e ®)

where € is an estimate of the covariance matrix of the prediction error &, is frequently
used in Eqn. (6). Then there is a close relationship between the estimate from Eqn. (6)
and the maximum likelihood estimate (MLE). This is a desired property since the
parameter covariance matrix then can be estimated from the inverse Hessian of the
minimization problem (6). Furthermore, there is obviously a close relationship between
the condition number of the Hessian and the identifiability of the parameter set. It can
be shown that the parameter combination corresponding to the smallest eigenvalue of
the Hessian matrix in a given experiment gives the parameter combination which is
most difficult to identify (Ljungquist, 1990). This information can be used to pick out
the parameter set which is to be estimated on-line as will be illustrated in the FCC
example.
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In the off-line identification procedure, different model structures, minimization
techniques, criteria etc. are tried out to find a satisfactory model. The minimization
techniques used to find a set of constant parameters over the time horizon of N samples,
may be similar to those used in optimal control computation, discussed in the next
section. It may be advantageous to set the state update matrix equal to zero in off-line
experiments in order to improve the predictive capabilities of the model. When it comes
to on-line estimation, the parameters must be allowed to change in order to keep the
prediction errors within acceptable bounds, and the state update matrix should be
included to increase the robustness of the algorithm. An estimation scheme as defined
in Eqn. (6) may be implemented on line with a moving time horizon of N samples, but
this strategy is not yet implemented in practical processes due to the high optimization
time consumption. Instead algorithms similar to that in Eqn. (6) are formulated
recursively in order to update the state and parameters using just one measurement
sample each time. In addition to the inherent lack of robustness in recursive
computation, recursive algorithms are sensitive to measurement noise becaase they are
based on quadratic criteria (Poljak and Tsypkin, 1980). However, recursive algorithms
may perform well in some applications. Because of their simplicity at least one recursive
algorithm should be tried out in order to justify the implementation of a more advanced
estimation scheme. The computing capacity available on modern computers allows for
on-line implementation of an estimation scheme based on Eqn. (6) with a robust
criterion in many industrial processes. It is believed that such a strategy will be applied
within a few years.

In order to solve the problem of simultaneous estimation of both states and
unknown parameters recursively, the state vector can be augmented with the unknown
parameters and the extended Kalman filter used to solve the resulting nonlinear
filtering problem. This strategy is often referred to as the augmented Kalman filter
(AKF). However, the assumptions leading to optimal filters are usually not valid in the
nonlinear case, which means that the AKF may diverge. More accurate nonlinear
filters, such as the iterated AKF and the truncated second-order filter (Jazwinski, 1970;
Gelb, 1974), have been successfully implemented to solve nonlinear filtering problems,
but still poor convergence properties may arise when the noise characteristics are
complex and unknown.

Using the innovations state—space representation, Ljung (1979) derived a Newton-
type stochastic gradient algorithm for the minimization of Eqn. (6) and showed that the
resulting algorithm, the recursive prediction error method (RPEM), has improved
convergence properties compared to the AKF in the case of a linear model. However
the algorithm suffers from the fact that simultaneous determination of both model
parameters and the parameterized state update matrix generally leads to an
overparameterized minimization problem. Because both the sensitivity matrix and the
optimal state update gain may change drastically if either the parameters or the control
variables change in nonlinear models, the parameter update direction computed from
the sensitivity matrix estimate in the RPEM may be nonprofitable. Then the RPEM
will generally diverge. Simulation results indicate that the AKF is more robust than the
RPEM when it comes to simultaneous state and parameter estimation in nonlinear
state—space models.

In the simulation of the FCC example, the AKF implemented in continuous
discrete form is used for the combined parameter and state estimation. It is important
to notice the similarity between the model states and the model parameters in the AKF
formulation. As the information which can be extracted from the measurements of an
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industrial process under continuous operation is usually restricted, the dimension of
the augmented state vector should be kept to a minimum. Sensitivity analysis (Gelb,
1974) can be a useful tool, but a model reduction procedure should be based on physical
considerations. The experience gained from the FCC implementation showed that the
following points are important:

o the dimension of the augmented state variable vector;

o the scaling of the state variables and the parameters;

e a numerically robust algorithm in the covariance updating equations (Bierman,
1977) and a robust ODE solver (variable step size/stiff solvers);

e well-tuned user chosen covariance matrices.

Further details on the practical implementation of AKFs can be found in Maybeck
(1979, 1982).

4. Open-loop optimal control conputation

The open-loop optimal control problem to be repetitively solved in the SSPC
strategy can be formally written as

min J= I LIx(t), u(t), ] dt 9)
Tp

ul)
such that

& — FTx),u), 70T,

x(t;) known by prediction
u(t)e[uy, u,] teT,
h[x(t), u(r), t]<0  teT,
Yx(t)]<0
ti=t,+6t
ty=t;+T
T,={tlt;<t<t,}

where

cost function, control objective

performance index, performance criterion, objective functional
optimization time interval

vector of state variables, dimension n

vector of control variables, dimension r

time

disturbance predictions

lower and upper constant control bounds

vector of state and control trajectory constraint functions
vector of state constraints at ¢,

real process time

optimization time consumption

length of optimization time horizon
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Numerical algorithms computing open-loop optimal controls have been proposed
by numerous contributors from the early 1960s, and one possible classification is
function space versus control vector parameterization (CVP) algorithms. In the former
class the controls are time functions which are determined by specific values for all time
instants. A prescribed parametric control function form s used in the latter class, which
means that the controls are completely specified by a limited number of parameters.

4.1. Function space algorithms

The Pontryagin maximum principle provides a control gradient value at each time
instant. With conjugate gradient and variable metric types of function space algorithms
the control variables are updated at every time instant according to these gradient
values. Extensions of finite-dimensional conjugate gradient algorithms to function
space were proposed by Lasdon et al. (1967), while Lasdon (1970), Tripathi and
Narendra (1970) and Edge and Powers (1976) proposed similar extensions for the
variable metric or quasi-Newton class. Quintana and Davison (1974) and Edge and
Powers (1976) handled control bounds explicitly by a clipping-off method. These
classical function space algorithms encounter great difficulties when there are
constraints imposed on some parts of the state trajectory. Penalty functions have been
proposed to treat fixed final states or state inequality path constraints (Kelley, 1962;
Lasdon et al, 1967; Quintana and Davison, 1974), which may result in poor
convergence. Furthermore, the penalty function techniques must be carefully im-
plemented and tuned (Strand and Balchen, 1990). Although these algorithms may work
well on unconstrained or control bound constrained optimal control problems, they
are not recommended as general tools in the SSPC system, because of their inefficiency
in handling general constraints.

Other types of function space algorithms have also been suggested, but will not be
discussed here. This is because different types of CVP algorithms seem to offer the
necessary constraint handling efficiency, and the control parameterization may be used
as a controller design tool as well.

4.2. Control vector parameterization

Using CVP the original infinite-dimensional optimal control problem is transfor-
med into a parametric optimization problem in a finite-dimensional space. This means
that well-developed nonlinear programming optimization codes may be applied, and
state constraints in the original problem become non-linear constraints in the
parametric optimization problem.

When the ordinary differential equations (ODEs) system is solved from initial to
final time as one initial-value problem by the application of a numerical integration
scheme, the technique is often called single shooting. In multiple shooting the time
horizon is divided in subintervals, on which the ODEs are locally integrated as
independent initial-value problems. Then the ODE:s for a given control trajectory are
not solved before state continuity at the subinterval knots is achieved. CVP has been
combined with both single and multiple shooting techniques to solve optimal control
problems.

Control parameterization with single shooting has been proposed by many
authors, and the main differences are in choice of control approximating functions,
treatment of state trajectory and end point constraints, and the gradient computation
technigues.
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4.3. CVP and single shooting

Sargent and Sullivan (1978) provide an excellent description of CVP combined with
single shooting and analytical gradient computations. Each control variable is
approximated by piece-wise polynomials, with parameter subsets to describe the
polynomial in each subinterval. The subinterval knots, or control switching times,
which may be optimized, are common for all control variables. Applying the
Pontryagin maximum principle, analytical gradient equations are outlined for the
optimization parameters. State trajectory constraints are handled by the introduction
of an integral equality constraint. Efficient ODE solvers for stiff systems are also
discussed.

All the constraints of the optimal control problem (9) may be incorporated in
Sargent and Sullivan’s strategy, and their proposed control parameterization is quite
general. However, there are some further considerations concerning:

e differentiability
e time consumption
e physical instability.

Deriving the necessary analytical gradient expressions may be quite laborious for
some optimal control problems, sometimes impossible. When it comes to actual
process implementation in the SSPC system, analytical gradients should be derived
whenever possible, with regard to reliability and computational efficiency. In the design
or feasibility study phases, however, and when analytical derivatives are not
obtainable, an alternative approach is numerical gradient calculations. This can be
done by cyclic parameter perturbation and corresponding solution of the initial-value
problem to measure the perturbation responses in the performance index and
constraint values. This strategy calls for high accuracy in the initial-value solver and
balanced choice of perturbation intervals in order to get sufficient accuracy in the
gradient values. The application of internal numerical differentiation (Bock, 1983) is
more efficient; this is claimed to save 60 to 80%; gradient computational time compared
to the former numerical strategy. On the other hand, the cyclic control parameter
perturbation and the initial-value solution strategy are ideally suited for implement-
ation in the parallel processing systems which are available today. These often have
very low costs compared to the potential increase in process earnings from more
advanced control. Even if analytic gradients are derived, numerical verifications should
be performed.

4.4. CVP and multiple shooting

CVP combined with muitiple shooting (Bock and Plitt, 1985) instead of single
shooting leads to more optimization parameters. This is because the initial-state
variables for all subinterval initial-value problems inside the time horizon are added to
the set of optimization parameters. Besides, one, generally non-linear equality
constraint is added to the problem for each extra optimization parameter, to demand
state continuity at the subinterval knots. Despite this increased dimensionality, the
multiple shooting technique may be preferable to single shooting. If gradients are to be
calculated numerically, the effect of control parameter perturbation is strictly local it
the control approximating functions are local, giving much less integration effort for
each control parameter. However, internal numerical differentiation in single and
multiple shooting does not make this advantage clear, and when analytical gradients
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are available the time consumption is either method is about the same for gradient
calculations. The possibility of removing the convergence influence of bad initial
control parameter guesses is more important. This is because the subinterval initial-
state values may be prescribed along a reasonable solution trajectory and the control
parameters only have a local effect in the first integration. In the SSPC scheme
proposed here, the initial control guesses are usually good if the model does not change
very much between two optimization runs. What may be a problem, however, is local
physical model instabilities occurring during the optimization. If that is likely to
happen, multiple shooting should be preferred to single shooting. Of course, a system
which is unstable must be stabilized before it is applied in an open-loop optimization.

A clear disadvantage of combining CVP with multiple rather than single shooting
in the SSPC system is the invalid state variable trajectories for a given control before
optimization convergence is attained. This fact degrades the information which can be
given to the operator during the optimization run, and increases the difficulties in
judging the effects of a timing interrupt of the optimization procedure, either from an
automatic timer or from the operator.

4.5. CVP with polynomial state approximation and collocation

In all the methods discussed so far, the state variable differential equations are
solved by a numerical integration scheme, completely solved for every control variable
pattern in single shooting, and locally solved on the subintervals in multiple shooting.
In the latter, continuity of the state variables is obtained while the optimization
converges. By approximating the state variables explicitly by polynomials, collocation
techniques can be used to decide the parameters in the polynomial expansions to get the
best fit to the model. In fact, this is nothing else but implicit numerical integration, and
for many collocation schemes the similarity to the Runge-Kutta formulas is obvious.
Hence, the collocation technique may be used to solve the state equations in the
optimal control problem, but nothing is gained from applying multiple or single
shooting if the equations are completly solved for every control pattern. The idea is to
solve the differential equations and the optimization problem simultaneously by
adding the state approximating parameters to the set of optimization parameters. The
collocation equality equations become equality constraints in the optimization
problem.

Neuman and Sen (1973) applied cubic splines to approximate both control and
state variables, ie. third-order polynomials were chosen on a finite number of
subintervals. A quadratic programming code was applied to solve the problem, since
the problem was linear-quadratic with a state variable inequality path constraint
which was linear in the state. Later contributions on collocation techniques to solve
optimal control problems are those by Tsang et al. (1975), Biegler (1984), Cuthrell and
Biegler (1987), Renfro et al. (1987) and Vlassenbroeck and van Dooren (1988).

The collocation scheme may be differentiated analytically and combined with
analytical or numerical differentiation of the original problem constraints and the
right-hand sides of the ODEs. An important observation is that the possible lack of
accuracy in the ODE solutions affected by the choice of approximating polynomials
does not degrade the optimization convergence through inaccurate gradients.

The dimension of the optimization problem is drastically increased by this
approach, while the computational effort spent on the model solution for each
optimization iteration is reduced by a fair amount compared to single and multiple
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shooting techniques. The method relies on nonlinear programming solvers which
efficiently handle nonlinear equality constraints. Here, sequential quadratic pro-
gramming (SQP) codes will be useful. Further, codes which exploit the sparsity of the
constraints Jacobian may be advantageous in practical applications.

As in the multiple shooting technique, the model solution with a given control
pattern is not valid before optimization convergence is attained. Whether this
methodology should be preferred in the SSPC system, must be judged from increased
optimization dimensionality versus reduced gradient computational effort, from an
operator’s point of view, and from system installation and maintenance considerations.
Performance comparisons of different types of optimal control algorithms demonstrate
the potential of the collocation techniques as general tools (Biegler, 1984; Strand and
Balchen, 1990).

4.6. Nonlinear programming algorithms

SQP algorithms are most frequently used to solve nonlinear programs (NLP),
which results from the application of CVP technique to original optimal control
problem. Well-developed codes are NPSOL (Gill et al. 1983) and NLPQL
(Schittkowski, 1985). If integer variables are added to the problem, by discrete control
variable values, for instance, the arising optimization problem is termed mixed integer
nonlinear programming (MINLP). In the case of discrete control values, a satisfactory
solution may be to approximate the control by continuous variables in the
optimization and pick the nearest realizable value when implementing the calculated
controls on the process. If this is not satisfactory, the discrete values, or even the on/off
values, must be iterated in an outer optimization loop, while the continuous problem
resulting from actual outer choices may be solved by an NLP solver (Duran and
Grossman, 1986; Floudas et al. 1989).

4.7. Control parametrization considerations in the SSPC context

There are several considerations which should be kept in mind when the CVP
strategy is to be discussed:

® The process model to be employed in the open-loop optimization is at best a
reasonable approximation of process behaviour.

® Only the first part of the optimized controls will ever be applied on the process.

e The model is usually changing from one optimization to the next.

® The CVP must provide enough degrees of freedom to meet the constraints.

® Batch process control usually demands more flexibility in the control pattern
than the control of a continuous process.

e The total computational effort spent on gradient calculations grows much faster
in numerical than analytical calculations with an increasing number of
parameters describing each control.

e The control must be parameterized according to realizable patterns. This means
for instance that an integrated control should not be allowed to change in steps; it
should rather be continuous.

So far only piecewise constant and linear parameterizations have been considered.
These are believed to provide enough approximating accuracy from the above
considerations. In the FCC example three to six control intervals favourably balanced
the computation time and performance index value. In the light metal electrolysis
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example, the minimum number of control parameters was merely governed by the
satisfaction of the constraints.
Typical questions that arise when deciding the CVP are:

e Piecewise linear or constant control?

& Number of control intervals?

e Control switching time optimization?

e Common or individual switching times for the control variables?

e Minimum length of different control intervals?

e Optimize initial value if piecewise linear control?

e Demand constant control in the last control interval if the controls are linearly
parameterized?

These choices influence the achievable value of the performance index, and may
influence the controllability with regard to constraints or set points. They may also be
used to balance the controller bandwidth against the time delay introduced in the
optimization loop.

5. SSPC of a fluidized catalytic cracking process
A modern FCC process consists mainly of three parts, a riser, a separator and a

regenerator as illustrated in Fig. 3. The heavy feed oil is mixed with hot catalyst from
the regenerator and reacts endothermically in the riser to form lighter hydrocarbons as

Figure 3. Schematic diagram of the cracking plant.
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well as coke. The lighter hydrocarbons, mainly gasoline, are separated from the catalyst
in the separator and sent to the fractionator, while the coke is deposited on the catalyst
which is returned to the regenerator. In order to maintain an acceptable catalyst
activity the coke is burned off in the regenerator. The air needed for this combustion is
supplied at the bottom of the regenerator in such a way that the catalyst is kept
fluidized in the rising air. This ensures good air and catalyst mixing in the so-called
dense bed of the regenerator. Irreversible deactivation and loss of catalyst in the flue gas
mean that makeup catalyst and catalyst withdrawal are needed during continuous
operation of the FCC unit.

The FCC unit exposes complex dynamics due to strong cross-couplings between
the endothermic riser and the exothermic regenerator sections and nonlinearities in the
reaction rates. In addition, nonlinearities will occur due to constraints on the process
variables:

e The rate of air supply to the regenerator is limited due to the process equipment,
and the fractionator capacity limits the rate of feed oil.

e The temperatures on the feed oil and the air to the regenerator can only be varied
within narrow constraints.

5.1. Modeling the FCC plant

Although major oil companies claim to have sophisticated models of the cracker,
the amount of published work in the open literature on dynamic catalytic cracking
models is rather restricted. Luyben and Lamb (1963) described a simplified model using
first-order kinetics for both the cracker and the regenerator. Kurihara (1967) presented
a model with more realistic kinetics for the cracking reaction, but his assumption that
the cracking takes place in a perfectly mixed tank with negligible cracking in the riser is
not valid for modern zeolite catalysts. Isles-Smith (1985) developed a detailed model,
but it is questionable whether such a complex model is necessary when the important
issue is to compare different control strategies. Lee and Groves (1985) have published a
relatively simple model where the kinetics in the riser is modeled using Weekman’s
‘three-lump’ model (Weekman and Nace, 1970), extended by Shah et al. (1977) to
account for cracking in transfer line under adiabatic, endothermic conditions. The
regenerator model come from Errazu et al. (1979), while the carbon buildup on the
catalyst is from Kurihara (1967). Huang et al. (1989) use a model similar to that of Lee
and Groves, except that a simple stripper model is included and the regenerator
afterburning is accounted for. As pointed out by Isles-Smith (1985) it may be necessary
to include the afterburning effect and the pressure drop across the standpipe in order to
get correct long-range predictions. However, complicated models cannot be assured to
be more precise than simpler ones due to lack of appropriate model parameters.
Moreover a simple model may be used in an on-line estimation scheme and it may be
extended if it turns out that neglected phenomena are more important to the model
dynamics than expected. In the simulations below, the process measurements are
computed from a model which is identical to that of Lee and Groves (1985) except for
some minor modifications. Some of the numerical values given there may be somewhat
unrealistic, but are used here to simplify controller comparisons.

5.2. A simplified FCC model

Lee and Groves’ model is quasi-dynamic because the riser equations are steady-
state ordinary differential equation which are solved every (-5 min, while the




92 J. G. Balchen et al.

regenerator is modeled using unsteady-state energy and mass balances in the dense bed.
If the regenerator temperature is kept between 920 and 1040K and ideal level control of
the stripper is assumed, the following model will describe the FCC process reasonably

well (Ljungquist, 1990):
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Typical numerical values are given together with the symbol definitions in the
Notation. z, may be interpreted as the location in the riser where the average reaction
temperature occurs, and should be tuned to make the algebraic riser equations agree
with the more accurate differential description (Shah et al. 1977). The gasoline Eqn. (20)
is from Kurihara (1967). Equations (5)(7), which form a rather stiff set of differential
equations, will be referred to as model 1. With the numerical values given, the largest
time constant is about 75 min while the smallest is about 0-008 min. The smallest time
constant is closely related to the oxygen balance in the dense bed, Eqn. (6). One way to
reduce this stiffness in to increase W, i.e. to use a fictitious air holdup in regenerator.
With a sample interval equal to 0-5min, this variable may be increased to 500 with
negligible effect on the model responses. The smallest time constant is then increased to
about 0-2min. Another strategy is to replace the dynamic equation (6) with the steady
state

Raoin
Oa (24l @7
7 4AM(1+0) "

The resulting model, referred to as model 2, gives approximately the same responses
as model 1.

An experimental study of the computational effort in the numerical integration of
the two models is presented in Strand (1991), where the performance of a stiff solver is
compared with several nonstiff solvers for both models. The stiff solver is a third-order
variable stepsize semi-implicit Runge-Kutta method due to Nersett and Thomsen
(SIMPLE, 1987). The nonstiff solvers are explicit Runge-Kutta methods, ranging from
the forward Euler to the fifth-order variable step-size method of Dormand and Prince
[Dopri 5(4), 1980].

The stiff solver is most efficient for low-accuracy (10~ 2) integration of model 1,
while a moderate accuracy requiring (10~%) makes the stiff solver and a second-order
variable stepsize explicit Runge-Kutta-Fehlberg [RKF2(3)] method about equally
efficient. The RKF2(3) method performs best for low-accuracy integration of model 2,
while the moderate accuracy request makes Dopri5(4) the best method for this model.
For the optimal choices of integration method, model 2 is solved about five times faster
than model 1 for both accuracies.

5.3. Identification of the FCC model

The state variables in a state-space model contain information about the history of
the past and reflect the model order. Real processes are theoretically of infinite order,
and it may be questionable to reduce the state dimension too much. It is felt that a
second-order model may be insufficient to describe a real FCC reasonably well. Thus
model 1 is used as the real-time model in the SSPC scheme, Fig. 1. When it comes to
long-range predictions, the smaller time constant may not be so important, and
therefore model 2 is used as the predictive optimization model in the SSPC scheme to
save computational costs. Because the fractionation system is not included in the
model, it is not realistic to assume that the components in the product gas are
measured. The measurement variables then are:

e riser outlet temperature;
e oxygen mole fraction in regenerator dense bed;
e regenerator dense bed temperature.
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A reasonable parameter vector to be adjusted online is:

0="[kok. keomo ,h12E/RT" (28)
where
ko rate constant for gas oil cracking
k! rate constant for catalytic coke formation
k.m  rate constant for coke burning
o, linear CO,/CO dependence on the temperature

hl,h2 parameters in the AH approximation
E,/R activation energy for coke burning reaction.

Using the optimal parameter vector, model 1 and moderate excitation, the
eigenvalues corresponding to an estimate of the Hessian over a time horizon of 250 min
are:

eig(F, ;) ={517x10% 374 x 10%, 136 x 10, 1-29,

431x107", 841 x 1072, 133 x 1074}, (29)

There is a large step between the two smaller eigenvalues, which indicates that only
six parameters should be estimated in this experiment. The eigenvector corresponding
to the smaller eigenvalue is dominated by the fifth element, and if h1 is kept constant,
the new eigenvalues are:

eig(Fgxe)={511x 10% 3-52 x 10%, 1-35 x 10", 1:28, 400 x 1071, 765x 1072}, (30)

This result shows that a reduced parameter set leads to a more well-conditioned
Hessian, and simulation results verify that it is hard to estimate k1 on-line using an
AKF. Simulation tests show that if reasonable measurement noise is added to the
simulated process measurements, the number of parameters to be adjusted online
should be less than or equal to four when a recursive estimation algorithm is used
(Ljungquist, 1990).

The system sample time used in the simulations is 0-5 min and the AKF is runfor 8 h
with correct initial parameters before time equal to 00 to attain reasonable initial
values for the covariance matrix of the augmented state. In all the simulations where the
AKF is used, ko, k!, koom» 0% and h2 are estimated. If the estimation algorithm performs
well, measurement noise will not significantly influence the resulting control strategy.
Measurement noise is therefore not included in the simulations shown in Figs 4-22,
where an increase of 4%, in the coking nature of the feed occurring at time equal to 1-0 his
used to compare different control strategies. This means that k; is increased from 0-019
to 00197 s~ /2 in the process. Note that the model parameters differ slightly from the
parameters used in the process, as illustrated in Fig. 14, because of the structure
difference. The innovations corresponding to the two simulations shown in Figs 14 and
15 were almost identical, indicating that it is sufficient to adjust five parameters online.

54. FCC control
The objectives of an FCC control scheme may be summarized as:

e For a given catalyst and a given feed, the riser exit temperature should be kept as
close to a given temperature as possible in order to maximize the profit.

e The temperature in the regenerator dense bed should be kept low to minimize the
irreversible catalyst deactivation and high to maximize the coke burning rate.
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e The oxygen concentration in the regenerator dense bed should be kept low to
avoid excessive afterburning in the freeboard region and a potential dangerous
situation, but it should be as high as possible to maximize the coke burning rate.

A short review of the control strategies reported up to 1980 can be found in Balchen
and Mumme (1988). Usually the feed rate, the feed temperature and the temperature of
the air to the regenerator are set at constant values while the mass flow rate of spent
catalyst is used to control the mass holdup in the stripper section. This leaves two
control variables to control the three measurements. In the conventional control
structure (Hicks et al. 1966) the riser exit temperature is controlled by adjusting the
recirculation rate of regenerated catalyst, referred to as the catalyst circulation rate
from now on, while the dense-bed oxygen fraction is controlled by adjusting the inlet air
rate. This control scheme results in oscillatory behaviour, and the integral action in the
Pl-controller has to be weak in order to avoid instability as illustrated in Fig 47, where
the control parameters used can be found in Lee and Groves (1985). Due to the
nonlinearity of the FCC process, the controllers have to be retuned if the operational
conditions change. If the PI-controller simulation in Figs 4-7 is repeated with a
corresponding decrease in the coking nature, the controller responses are very bad.

Other control schemes based on Pl-controllers have been proposed (Kurihara,
1967; Lee and Weekman, 1976; Bromley and Ward, 1981) and simulation results
indicate that they perform much better than the conventional controller. Even so, they
are mot widely used for practical processes. LQ controllers have been proposed
(Schuldt and Smith, 1971; Isles-Smith, 1985), but it turns out that these do not have the
desired robustness because they rely on a linear model for the state estimation and
feedback matrix computation. More recently MPC techniques have been successfully
implemented on real FCC processes (Rhemann et al. 1989).
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Figure4. Riser outlet temperature, T;,(1) ( x 100 K) (4-0% increase in carbon formation rate, k?,
at t=10h).
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Figure 5. Oxygen mole fraction in regenerator dense bed, O,(mol%) (4-0% increase in carbon
formation rate, k!, at t=1-0h).
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Figure 7. Regenerated catalyst recirculation rate, F, (kg/min) (407, increase in carbon
formation rate, k;, at t=1-0h).

The present FCC simulation study is performed to illustrate some features of the
proposed SSPC technique. The simulated FCC process serves as a reasonably
complicated test case, and some mismatch is introduced between the simulated process
and the nonlinear models which are used in the SSPC scheme. The results obtained will
indicate the advantages of using the SSPC strategy to control a more complicated real
FCC process. A simulation study is the natural way to quantify these advantages.

In the simulation experiments to be discussed next, the SSPC is implemented with
the following two criteria [cf. eq. (9)]:

Predictive set-point control:

L1=P(T{1)— T%?+ Py(0,— 0% + P,(T,,— T};)* (31)
Optimal predictive control:
L2=F u{y(1)Pro—[1-0—y (1)1Pr,
+[1:0—y ((1)— y,(1)]Pr,} — F o T —400-0)

X Pry—Coy—Pppy—04Pra—F Prs (32
where
Co. = Co, if T,,<960
4™ | Coy +Coy(T;,—960)* if T,,=>960

Py gy= max {00, (T;,+45000,)— 1010} P;. (33)
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The numerical values used are given together with the symbol definitions in the
notation list. The profit-based criterion L2 includes product stream values and costs
related to the use of control variables. In addition, a simple catalyst cost model is
included to account for the increased irreversible catalyst deactivation for high
regenerator temperatures. The potentially dangerous after burning is considered by a
linear penalty on the flue gas temperature as shown in Eqn. (33). It might be more
correct to use some combination of a penalty and a hard constraint to account for this
effect in a real process. This profit function can be used for steady-state optimization for
the computation of set points, but in the present context it is also used to optimize the
profit dynamically. Then the profit function L2 is the integrand of Eqn. (9).

In all the SSPC simulations, a minimum control interval length of 0-5 h is used, and
the control approximations are piecewise linear. The initial values of the control
variables are kept constant in the optimization in order to attain realizable solutions,
and three to five control intervals are used in the experiments with moving time
horizons. A single shooting technique with analytical gradient calculation is applied,
giving a maximum optimization time consumption of about 20s on a Sun SPARC
station 1 (Strand, 1991). Despite this, 10 min is used as the sample time ¢ for the
optimization algorithm, which means that about 1/30 of the SPARC computing
capacity will be sufficient for an on-line implementation with this model complexity.

Criterion L1 corresponds to predictive set-point control like MAC and DMC
except that a nonlinear state-space model is used. Figures 4-7 compare predictive set-
point control using a perfect model, i.e. correct parameters and no estimation, and with
no weight on the regenerator temperature, to a conventional controller. Although
seven control intervals are used in this single horizon optimization, Figs 6 and 7
indicate that control intervals may be sufficient in moving horizon applications. It is
seen from Figs 4 and 5 that the responses are significantly faster than those of the
conventional controller, especially when it comes to the oxygen mole fraction response.
Note that the amplitude of the SSPC temperature response can be made smaller at the
cost of the oxygen fraction amplitude by increasing the weight on the temperature
deviation in L1, and that the responses can be made faster by reducing the minimum
control interval length in the optimization. _

When the SSPC scheme is applied with state estimation only, both the state initial
values used in the optimization and the predictions of the optimization model are
incorrect compared to the process. The computed controls make the prediction model
reach the set points, while the process measurements deviate. When a feedback matrix
is included the deviation become smaller. This is illustrated in Figs 8 and 9 where the
feedback matrix is constant and computed using a linearized model at the set points.
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Figure 8. Riser outlet temperature, T;,(1)( x 100 K) (4-0% increase in carbon formation rate, k2,
at t=1-0h).
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Figure 9. Oxygen mole fraction in regenerator dense bed, 0,(mol%) (4-0%, increase in carbon
formation rate, k!, at t=1-0h).
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Figure 10. Riser outlet temperature, T,,(1) ( x 100K) (4-0%, increase in carbon formation rate,
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Figure 11. Oxygen mole fraction in regenerator dense bed, 0,(mol%,)(4-0% increase in carbon
formation rate, k., at t=1-0h).

Figures 10 and 11 show that the responses are satisfactory when the parameters are
estimated. The feedback matrix is used in this simulation as well. In all the predictive
control simulations shown in Figs 14-22 both the parameter estimator and the
feedback matrix are included.

If the regenerator temperature is weighted instead of the riser outlet temperature in
L1, the controller performance is improved as shown in Figs 12 and 13. This result
agrees with the fact that the Kurihara controller perform better than the conventional
controller at this set point. Isles-Smith (1985) shows that if the FCC process is operated
in the high-temperature regeneration mode, the conventional controller may be
advantageous to the Kurihara controller. A predictive set-point controller takes
advantage from the fact that the pairing problem is avoided, and the number of control
variables and measurements do not have to be the same. In the FCC process all three
measurements should be weighted in the criterion. If a disturbance occurs and the set
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Figure 14.  Estimated rate constant for catalytic coke formation, k}( x 0-01 5~ '/2) (4-0% increase
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Figure 15. Estimated activation energy for coke burning reaction, Eg4/R(x 107K) (40%
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points cannot be reached due to controllability problems, all the measurements will
then deviate from their set points. However, the deviations are weighted against each
other according to the criterion L1, instead of forcing just two measurements to their
set points. The advantage of such a control strategy is illustrated in Figs 16-21. The
initial set points are found from the steady-state optimal set point computed from L2
with a coke formation rate of 0019~ Y2, When the formation rate is increased by 4%,
the net profit rate will decrease as illustrated in Fig. 21. It is then assumed that the set
point is changed to the new optimal set point 4 h after the feed coking nature is changed.
This decision may be based on the corresponding parameter estimates shown in Figs 14
and 15. Figure 21 illustrates the net profit rate based on L2 and clearly shows the
advantage gained from using predictive set-point control compared to Pl-control. The
main reason is that the conventional controller results in a very high regenerator
temperature before the set points are changed (Fig. 18).
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Figure 16. Riser outlet temperature, T,;(1) ( x 100K) (4-0% increase in carbon formation rate,
k!, at t=1-0h, set-point change at =50h).
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Figure 17. Oxygen concentration in regenerator dense bed, O,(mol?;) (4-0% increase in carbon
formation rate, k., at t=1-0h, set-point change at t=>50h).
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Figure 18. Regenerator dense bed temperature, T,,(x100K) (409 increase in carbon
formation rate, k}, at t=1-0h, set-point change at t=50h).
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Figure 19.  Air rate to regenerator, F,(kg/min) (4-0% increase in carbon formation rate, &, at
t=1-0h, set-point change at t=50h).
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Figure 20. Regenerated catalyst recirculation rate, F, (kg/min) (4-0% increase in carbon
formation rate, k!, at t=1-0h, set-point change at t =5-0h).
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Figure 21. Net profit rate (x 1000 NOK /h) (4-0% increase in carbon formation rate, kZ, at
t=1-0h, set-point change at t=>5-0h).
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Figure 22. Net profit rate (x 1000 NOK/h) (40% increase in carbon formation rate, k!, at
t=1-0h, set-point change at 1 =5-0h).
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The simulation experiments discussed above demonstrate some of the advantages
of predictive control. However they do not illustrate all the advantages of using a
criterion based on net profit rate, L2. From Figs 16-22 it is seen that the resulting
optimal predictive control results in a better profit rate than any other control scheme.
A lot of simulations were performed using this criterion (Strand, 1991), and the main
results may be summarized as:

e The net profit rate is increased by including the oil feed rate in the optimization.
But then the control variables must be constrained because maximization of the
profit rate results in maximum rate of either air to regenerator or oil feed to riser.

e When a profit function like L2 is used, state constraints are not necessary for the
simulated FCC process. However, a different catalyst cost function could change
this conclusion.

e Even though one control variable lies on its upper bound, the control strategy
has no difficulty in handling process disturbances.

6. SSPC of a multiunit electrometallurgical process

In order to highlight some of the capabilities of the proposed SSPC strategy, the
multiunit electrometallurgical (electrolysis) process described by Balchen et al. (1989) is
revisited. Part of the process is schematically drawn in Fig. 23. The units are
structurally identical, and are modeled by energy and mass balance differential
equations. What really makes this process an extremely strong candidate for SSPC, are
the strong interactions between the units through the control variables (main direct
current and demand on total use of feed aggregate A) and hard constraints on the
temperature and concentration in each unit. The control actions and limitations are:

e main direct current through all units;

e additional direct current for each row of units, 0-8%, of nominal main current;

e individual heating element for each unit, discrete in five levels;

® bypass possibility to cool a unit, which means that nothing is produced in that
unit;

e feed aggregate A, with temperature about the same as that of the unit;

o feed aggregate B, chemically identical to A, but at much lower temperature;

e feed aggregate A is produced at an upstream stage with no storage facility.

Feed State variables
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Figure 23. The multistage electrometallurgical process.
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Hence, all available aggregate A must be used immediately, and there is certainly
a prediction possibility of future available feed due to the production time delay;

e there is a rather small stock capacity of feed aggregate B. In the present
simulations a constant flow rate into the stock is assumed. Feed aggregate B
costs about 509, more than aggregate A.

The goal of the process is metal production, at a high net profit rate. Though there
are certain state-dependent conditions, such as increasing process yield with decreasing
temperature, and decreasing internal resistance with increasing temperature and
decreasing concentration, production continues as long as the state variables stay
between their upper and lower-bounds. These bounds are due to operational reasons,
and keeping the state variables in the required domain is an absolute demand. This is
why the unproductive control actions represented by additional heating and bypass are
included in the process.

Under normal operating conditions it suffices to describe the process by two state
variables for each unit (temperature and concentration). Under abnormal conditions a
more detailed model is necessary, the structure and parameters of which are known and
can be implemented in an industrial system. In this paper these abnormal aspects have
been neglected in order to make the presentation tractable.

When this process is to be optimized over a finite-time horizon and the profit
function consists of metal price and costs of raw material and energy, the unit
concentrations are driven to their lower bound at the end of the time horizon.
Naturally, it is optimal to reduce the ‘stock” of raw material in the unit to a minimum
when a finite-time horizon is considered, but it is not a desirable solution since the
process is to be continuously operated. Concentration at the lower bound is also
favourable in terms of energy costs because of low resistance, while the temperature
tends to approach the lower bound to increase the process yield.

Process variables which approach bounds when pure profit functions are
maximized should not be too surprising. Because of process disturbances and the
strong control couplings, it is not desirable to operate with process variables at their
bounds. If possible from the computational point of view, uncertainties could have
been modeled and Monte Carlo simulations performed to decide stochastic optimal
control strategies, and the process variables would certainly not have been driven to
their bounds. A more practical approach is to introduce quadratic penalties on
deviation from some prescribed values, which has actually been done in the present
simulations.

The mass and energy balance differential equations are equal to those presented in
Balchen et al. (1989), while the optimization problem is slightly differently formulated
by:

Profit function (each unit):
metal price x process yield x direct current

— dc energy price x voltage across unit x direct current

— price feed aggregate A x feed rate aggregate A

— price feed aggregate B x feed rate aggregate B

—  price additional heating x heating power

— linear cost of temperatures exceeding mean temperature due to equipment
— cost of temperature variations due to equipment.
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Penalties (each unit):
quadratic cost of temperature derivations from mean temperature

+ quadratic cost of concentration deviations from mean concentration
+ cost of concentration variation, which increases linearly with time.

Stock penalty:
quadratic cost in upper and lower thirds of feed aggregate B stock.

Optimal control problem:

max J = J [ Y. (profit— penalties) —stock penalties]dt (34)
Tp

units

under the constraints: (3%)

e temperature within upper and lower bounds;

@ concentrations within upper and lower bounds;

e all units in one row are subject to the same direct current;
e additional heating is discrete in five levels;

e all available feed aggregate A must be used;

e stock capacity of feed aggregate B is fixed.

6.1. Solution strategy

Single shooting with numerical gradient calculations is applied in the simulation
studies. The control variables are piecewise constant, with three to six independent
control intervals. Feed aggregates A and B have equal control interval time
distributions for all units to simplify the treatments of the two last constraints defined
above. Temperature and concentration constraints are pointwise evaluated witha 10h
interval, while the feed constraints are evaluated at the control switching times. The
discrete additional heating control has been regarded as continuous in the optimiz-
ation, and the closest realizable level is implemented on the simulated process.

6.2. Simulation experiment

A lot of simulations have been done, and the SSPC strategy performs satisfactorily
in the sense that the constraints are met if the control actions have enough degrees of
freedom for the actual situation. Further, the pure profit maximization according to the
chosen criterion weights.

The FCC control simulations illustrate the modeling and identification aspects of
the SSPC strategy, in addition to controller performance in a multivariable, highly
nonlinear and dynamically coupled process. The present example highlights the SSPC
advantages in the handling of constraints and disturbance predictions. Therefore, the
optimization model and the simulated process are equal, except for the discrete
additional heating control variables and the chosen disturbance if this is not predicted
in the model.

In the simulation, presented in Figs 24-32, a disturbance in the amount of available
feed aggregate A is applied. This realistic disturbance may be predicted because of the
time delay in the feed production. The simulations show the resulting process control
with and without disturbance predictions.
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Figure 24. Disturbances in available feed aggregate A,
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Figure 25. Unit temperature (predicted and unpredicted disturbances in available feed
aggregate A).

10 o~ Frodaed
— T
' Unpredicted =~
=
6 i e e e
Lower concentranon bound
. Time [bours]|
100, 200. o0, 400.

Figure 26. Unit concentration (predicted and unpredicted disturbances in available feed
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Figure 27. Optimized direct current (predicted and unpredicted disturbances in available feed
aggregate A).
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Figure 28. Optimized additional heating (predicted and unpredicted disturbances in available
feed aggregate A).

Feed aggrega B

Figure 29. Optimized feed aggregate B (predicted and unpredicted disturbances in available
feed aggregate A).
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Figureé 30. Stock content feed aggregate B (predicted and unpredicted disturbances in available
feed aggregate A).

In order to make the message clear, just one process unit is simulated. This is
nevertheless a valid assumption, since the disturbances in feed availability would have
been equally distributed to each unit if the initial states and all process parameters were
equal in all units. The optimization time horizon is 120 h, which is in fact quite long for
this process, also compared with the time horizon movement of 4h between each
optimization,

The obvious advantages of taking the predictable disturbances into account in the
SSPC strategy in these simulations are:

e Unit temperature is kept at a more desirable level.

e Unit concentration prepares for the disturbance.

o Stock level of feed aggregate B prepares for the disturbance and is more desirable
throughout the period of lowered availabiltiy of feed aggregate A.

@ The net profit is increased.
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Figure 31.  Net profit rate (NOK/h) (predicted and unpredicted disturbances in available feed

aggregate A).
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Figure 32. Penalty cost (NOK/h) (predicted and unpredicted disturbances in available feed
aggregate A).

When subtracting the total penalty, Fig. 32, from the net profit rate, Fig. 31, the
resulting quantity is that being optimized. This clearly illustrates that it is favourable to
take predictable disturbances into account in the optimization.

Computational time consumption on the SPARC station makes the SSPC
applicable to the real process even when all process units are included in the
optimization (Strand, 1991).

7. Conclusions

The well-known MPC concepts are extended to account for severe process
nonlinearities and general constraints on process variables. This is achieved by
introducing the SSPC strategy. A further advantage with the SSPC compared to earlier
MPC strategies is the great flexibility in defining the optimality criterion.

Well-known theoretical and practical results from the areas of state-space
modeling, model identification and optimal control are applied in developing the SSPC
scheme for process control. SSPC is probably the most ‘model-based’ process control
system ever suggested. Thus, the initial modeling, which is mostly based on physical
process knowledge and identification phases, must be carefully accomplished and
might be quite laborious for some processes. When it comes to implementation, it is
necessary to include an on-line estimation scheme capable of correcting unmeasured
state variables and estimating the chosen set of unknown model parameters. This can
be done by applying a recursive scheme such as AKF or by more time consuming, but
consequently more robust, methods like direct on-line implementation of the
maximum likelihood estimation strategy. Clearly, the long-range predictive capa-
bilities of the model and the identifiability of the parameter set must be stressed.

The prediction model is used in an open-loop optimal control calculation. This can
be done by control vector parameterization (CVP) combined with single or multiple
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shooting or even state polynomial approximation and collocation to solve the set of
first-order differential equations. If constraints on state, control or output variables are
present, the resulting problem is generally most efficiently solved by a sequential
quadratic programming algorithm. The actual CVP was found to be an important
tuning factor in the SSPC strategy.

The optimality criterion does not at all have to be quadratic; instead it could reflect
the economical aspects of the process operation. When a criterion based on net profit
rate is used, some of the process variables will often approach their limits. Penalties
then have to be introduced in the optimality criterion to maintain enough controller
flexibility to handle process disturbances.

The time delay in the open-loop optimal control calculation requires that a
feedback from the deviation between the nominal predicted state variables and the real-
time estimated state variables has to be introduced to account for the unmodeled
disturbances. Optimal feedforward from predictable disturbances is achieved by taking
them into account in the optimal control calculation.

On the FCC example both modeling and identification concepts are illustrated. The
advantages of using SSPC as a set-point controller are quite clear compared to the
conventional single-loop PID controllers. Further, the simulations demonstrate the
possibility of computing the controls from an optimality criterion established from
economical considerations. The light-metal electrolysis simulation highlights the
inherent constraint handling capacity of the SSPC, and shows the improved
performance gained from taking predictable disturbances into account in the open-
loop optimization.

Even though the methods combined into the SSPC strategy have been known for
quite a long time, no implementation of such a scheme is known. The constant increase
in computing capacity makes it reasonable to suppose that the SSPC will be a future
control strategy. The computer time consumptions in the FCC and the light-metal
electrolysis examples were small enouugh to allow for SSPC in these processes.
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NOTATION
List of abbreviations
AKF augmented Kalman filter
CVP control vector parameterization
DMC dynamic matrix control
FCC fluid catalytic cracking
LQ linear quadratic
QDMC quadratic DMC
MAC model algorithmic control
MINLP mixed integer nonlinear program(ming)
MLE maximum likelihood estimate
MPC model-predictive control
NLP nonlinear program(ming)
ODE ordinary differential equation
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RPEM recursive prediction error method
SQP sequential quadratic programming
SSPC state-space predictive control

FCC notation

C.u weight fraction of coke deposited on catalyst, kg/kg

COR  catalyst to oil weight ratio, kg/kg

C,. weight fraction of coke on regenerated catalyst, kg/kg

C,. weight fraction of coke on spent catalyst, kg/kg

c heat capacity of air, kJ/kg K

Cpa heat capacity of dispersing stream, kJ/kg K

heat capacity of oil, kJ/kg K

heat capacity of catalyst, kJ/kg K

Coy constant factor in catalyst cost model, NOK /min

Co,  cost factor regenerator temperature in catalyst cost
model, NOK/K? min

Co,,, cost of catalyst consumption, NOK/min

E. activation energy for coke formation, kJ/mol

E, activation energy for coke burning reaction, kJ/mol
E, activation energy for gas oil’ cracking, kJ/mol
F, mass flow rate of air to regenerator, kg/min

Fo mass flow rate of gas oil feed, kg/min

F,. mass flow rate of regenerated catalyst, kg/min

F, mass flow rate of spent catalyst, kg/min

F, gasoline yield factor of catalyst

hl parameter in the approximation for AH, kJ/kmol
h2 parameter in the approximation for AH, kJ/kmol K

I, gasoline recracking intensity

k! rate constant for catalytic coke formation, s~ */2
k.m  rate constant for coke burning, 1/min

ko rate constant for gas oil cracking, 1/s

K, approximate reaction rate for gas oil cracking at z,

L1,L2 predictive control criteria

M, molecular weight of coke, kg/kmol

M., molecular weight of carbon, kg/kmol

m empirical deactivation parameter

N empirical exponent in coke formation equation
n hydrogen content in coke

0, oxygen mole fraction in regenerator dense bed
08 set point for the mole fraction

oxygen mole fraction in air

P, penalty factor flue gas temperature, NOK/K min

)
g

109

Nominal values
0-0069

698

0-00385
001075

1074

19

31335

1-005

500

003125

41-79
158-6
101-5
1543-6
2438-0
17,0239
17,023-9
1-0
521,1500
2450
09
001897
29-338
96.200-0

140
12:0
80-0

04

2:0
000472
0-00472
02136
20

Py, penalty on afterburning rate/flue gas temperature. NOK/min

P, weight factor on quadratic riser outlet temperature

deviation 0-01/00
Py weight factor on quadratic dense bed oxygen fraction

deviation 100,000-0
P, weight factor on quadratic dense bed temperature

deviation 0-01/0:0
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Pry price of gasoline, NOK /kg 1-34
Pr, price of feed, NOK /kg 0-84
Pr, price of light products, NOK /kg 070
Pry price of feed preheat, NOK/kg K 0-00017
Pr, price of oxygen concentration for regularization, NOK/min 800-0
Prs price of inlet air to regenerator, NOK/kg 0-0

R universal gas constant, kJ/(mol K} 0-0083143
R, molar flow rate of air to regenerator, kmol/min 53-50
R, recycle ratio 0-0

T, temperature of air to regenerator, K 3200
Ta temperature of gas oil feed, K 4200
T, temperature of catalyst in regenerator dense bed, K 972-1
ng set point for regenerator dense bed temperature, K 972-1
T,{0) temperature of catalyst and gas oil mixture at riser inlet, K 7990
TS set point for the riser outlet temperature, K 7749
T,{(1) temperature of catalyst and gas oil mixture at riser outlet, K 7749
T, approximate riser temperature at z,, K

f time, min

t, catalyst residence time in riser, s 96

114 catalyst holdup in regenerator, kg 175,738-0
w, air holdup in regenerator, kmol 200
y,(0) weight fraction of gas oil in feed 10
yr(1)  weight fraction of gas oil in product 0-5137
y,(1)  weight fraction of gasoline in product 0-3532
z, dimensionless position for average reaction rate in riser 0-0555
Greek letters

a catalyst decay rate constant, 1/s 012
AH heat of reaction of coke burning, kJ/kmol

AH,  heat of reaction gas oil cracking, kJ/kg 5060

A weight fraction of steam in feed stream to riser, kg/kg 0035

o CO,/CO ratio in regenerator dense bed

g, linear CO,/CO dependence on the temperature, 1/K 0006244

¢ catalyst decay function
do activity of regenerated catalyst
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