“Sliding control of MIMO nonlinear systems”

Authors: Thor I. Fossen and Bjarne A. Foss,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1991, Vol 12, No 3, pp. 129-138.

Keywords: Feedback linearization, sliding control, Lyapunov stability theory, polymerization reactor

Abstract: Sliding control of MIMO (multivariable input multivariable output) nonlinear minimum phase systems is discussed. Stability conditions related to model errors are emphasized. Global asymptotic stability is guaranteed by applying Barbalat´s Lyapunov-like lemma. The control law is applied to a simulator of a polymerization reactor.

PDF PDF (1059 Kb)        DOI: 10.4173/mic.1991.3.3

DOI forward links to this article:
[1] Roberto Font and Javier García-Peláez (2013), doi:10.1016/j.oceaneng.2013.07.021
[2] M. Perrier, V. Rigaud, C.C. de Wit and R. Bachmayer (1994), doi:10.1109/ROBOT.1994.350974
[3] D. Maalouf, I. Tamanaja, E. Campos, A. Chemori, V. Creuze, J. Torres and R. Lozano (2013), doi:10.3182/20130204-3-FR-2033.00085
[4] Ole M.R. Rabanal, Astrid H. Brodtkorb and Morten Breivik (2016), doi:10.1016/j.ifacol.2016.10.352
[5] Uzair Ansari, Abdulrahman H. Bajodah and Saqib Alam (2016), doi:10.1016/j.ifacol.2016.10.498
[6] Uzair Ansari and Abdulrahman H Bajodah (2017), doi:10.1177/1475090217708640
[7] Hui Li, Xuemei Pan and Chen Guo (2017), doi:10.23919/ChiCC.2017.8027451
[8] Hyun-Shik Oh, Min-Jea Tahk, Dong-Wan Yoo and Byung-Yoon Lee (2018), doi:10.1007/s42405-018-0053-z
[9] M. Perrier and C. Canudas-De-Wit (1996), doi:10.1007/BF00141155
[10] Anyuan Bi and Zhengping Feng (2019), doi:10.1007/s00773-019-00670-z
[11] Anyuan Bi, Fengye Zhao, Xiantao Zhang and Tong Ge (2020), doi:10.3390/jmse8030181
[12] Anyuan Bi, Zhengping Feng and Chenlu He (2021), doi:10.1115/1.4048788
[13] Osama Alagili, Mohammad Aminul Islam Khan, Salim Ahmed, Syed Imtiaz, Hasanat Zaman and Mohammed Islam (2020), doi:10.1109/AUV50043.2020.9267928
References:
[1] BYRNES, C. ISIDORI, A. (1984). A frequency domain philosophy for nonlinear systems with application to stabilization and adaptive control, Proc. IEEE Conf. on Decision and Control, Las Vegas, Nevada, pp. 1569-1573.
[2] SASTRY, S.S. ISIDORI, A. (1991). Adaptive control of linearizable systems, IEEE Transactions on Automatic Control, 34, 1123-1131 doi:10.1109/9.40741
[3] SINGSTAD, P. (1992). Modelling and control of an industrial autoclave LDPE polymerization reactor, Dr.ing Thesis, The Norwegian Institute of Technology, Division of Engineering Cybernetics, N-7034 Trondheim, Norway.
[4] SLOTINE, J.J.E. (1983). Tracking control of nonlinear systems using sliding surfaces, Ph.D Thesis, MIT Dept. of Aero. and Astrodynamics, Cambridge.
[5] SLOTINE, J.J.E. LI, W. (1987). Adaptive manipulator control: A case study, IEEE Int. Conference on Robotics and Automation, pp. 1392-1401.
[6] SLOTINE, J.J.E. LI, W. (1991). Applied Nonlinear Control, Prentice-Hall.
[7] YOERGER, D.R. SLOTINE, J.E. (1985). Robust trajectory control of underwater vehicles, IEEE Journal of Oceanic Engineering, 10, 462-470 doi:10.1109/JOE.1985.1145131
[8] UTKIN, I.U. (1977). Variable structure systems with sliding modes, IEEE Transactions on Automatic Control, 22, 222 doi:10.1109/TAC.1977.1101446


BibTeX:
@article{MIC-1991-3-3,
  title={{Sliding control of MIMO nonlinear systems}},
  author={Fossen, Thor I. and Foss, Bjarne A.},
  journal={Modeling, Identification and Control},
  volume={12},
  number={3},
  pages={129--138},
  year={1991},
  doi={10.4173/mic.1991.3.3},
  publisher={Norwegian Society of Automatic Control}
};