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Sliding control of MIMO nonlinear systems
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Sliding control of MIMO (multivariable input-multivariable output) nonlinear
minimum phase systems is discussed. Stability conditions related to model errors
are emphasized. Global asymptotic stability is guaranteed by applying Barbalat’s
Lyapunov-like lemma. The control law is applied to a simulator of a polymerization
reactor.

1. Introduction

The major problem with feedback linearization techniques is robustness due to
imprecise cancellations of the model nonlinearitics. In the case of parametric
uncertainties, global asymptotically stable controllers may be found by using the
Lyapunov stability theory. Well known techniques, arising from this approach are
adaptive feedback linearization and sliding control which both have been successfully
applied in robotic control (Slotine (1983)). Sliding control has also been applied in the
control of underwater vehicles which are highly nonlinear and time-varying in their
parameters (Yoerger and Slotine (1985)). This paper shows how sliding control can be
applied to MIMO nonlinear minimum phase systems in the form x=f(x) + G(x)u with
y = h(x). These results are also extended to the more general model class X =f(x, u) with
y=h(x). In some cases, the general model class is necessary because of the complex
structure of a model. This is true in certain process control applications, for instance.
An example from a polymerization plant will be used in this investigation.

The paper is outlined as follows: Section 2 discusses feedback linearization and
sliding control of MIMO affine systems. Sliding control of the more general model class
is examined in Section 3, while results from the simulation studies are presented in
Section 4. The paper ends with the conclusions.

2. Affine systems
Before we discuss the more general nonlinear model class x=f(x,u) we will

consider MIMO nonlinear systems which are linear in control or affine. These systems
can be expressed as

x=f(x)+G(x)u
y=h(x) (1)
with (xeZ2", ye®™, uc%k*) and (f(x), G(x) and h(x)) smooth.
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2.1. Review of input—output feedback linearization of affine systems
Differentiating the output y with respect to time yields

¥y=H,(x)f(x)+H (x)G(x)u

where H (x)=dh(x)/dx is the Jacobian. This control problem may be reduced to that of
controlling the linear system

y=v
where the choice: v=y,— K (y—y,) yields the error equation -
é+Kpe=0 )

Here K, is a positive definite design matrix of appropriate dimension, y, is the
desired trajectory and e=y— y,. If the system Eqn. 1 is square, for example m=p, and
H,(x)G(x) is nonsingular for all xe#" the actual control input u could be calculated as

u=(H(x)G(x))” '[v— H (x)f(x)]

Itis convenient to let r;denote the systems relative degree i.e. the smallest number of
differentiations r; the output y; has to be differentiated for one of the control inputs to
appear. The total relative degree is defined as r=r, +...+r,,. Let us consider the case of
r<n. Defining G=[g,,...,§,] and Lgh; and L h; as the Lie derivatives of h; with
respect to f and g, respectively, implies that Eqn. 1 can be expressed as Sastry and
Isidori (1989)

W= Lyt ZLeALS b N

The smallest integer r; is found by requiring that at least one of the Lie derivatives
Lg{(L’{ ')#0Vx. Notice that if the control input does not appear after at least r;
differentiations the system will not be controllable. Let the m x m decoupling matrix
G*(x) be defined as, Sastry and Isidori (1989),

Lg (L7 'hy) ... LgnL} 'hy)
G¥(x)= :
LgLy~'h,) ... Lg L7 'h,)
and

f*(x)-:(L?hl? AR L'}nhm)r
Hence, Eqn. 3 can be written in a compact form as

o U,
=f¥x)+G*(x)| : @

o U
The equivalent linear system to be controlled is

Yr=p; j=1...m %)
If G¥*(x) is non-singular the nonlinear feedback control law

u=(G*(x)) " '[v—f*(x)] (©6)
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yields the decoupled system Eqn. 5 directly. A system with relative degree (ry,...,r,)
can be transformed into a so-called normal form by applying a diffeomorphism
(£, z)= T(x) defined as

li=h, =Ly .. n=L}"h,
(f=hm (3=Lgh, ... =Ly 'hy,
This implies that Eqn. 4 can be expressed as

b=4

L=116 2+ 3 Gt o

.Vj"_-C{
where j=1,2,...,m and
2=y({, z)+ ¥(, 2)u 7

The state vector z denotes the internal dynamics and

Y8, 2) = Llulx)
WilC, 2) = Lg{(x)

where (k=1,...,n—r)and (i=1,...,m). The zero-dynamics of the nonlinear system is
defined as the dynamics of the system when the outputs are constrained to be
identically zero i.e. {=0. This is obtained by choosing the control inputs as

u(0, z)= —[GXT (0, 2)] " 'f*(T~'(0,2)

Eliminating u from Eqn. 7 yields the zero dynamics

2=y(0,2)—"¥(0, )[GXT (0,2)1'fXT (0, 2)

Notice that the zero dynamics are made unobservable by state feedback. The
nonlinear system Eqn. 1 is said to be non-minimum phase if the zero dynamics are
unstable and asymptotically minimum phase if the zero dynamics are asymptotically
stable (Byrnes and Isidori (1984)). For minimum phase systems, feedback linearization
results in bounding tracking if the desired motion trajectory is bounded. The proof is
given in Sastry and Isidori (1989).

Uncertainties in the functions f and G in the non-linear decoupling may result in
imprecise cancellations of the nonlinear terms. In the next section we will demonstrate
how sliding control can be used to compensate for model uncertainties.

2.2. Sliding control of affine systems
The sliding design methodology is described in detail by Slotine (1983, 1991) and
Utkin (1977). In the following, it is convenient to define the operators:

le = [lel’ |x2|r ey |xlr|]1
sgn (x)=[sgn (x,),sgn (x5), ..., sgn(x,)1"

X X y=[X,¥1,X3¥2,-+» Xp¥n]"
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In sliding control the error equation, Eqn. 2, is replaced by
§+k. xsgn(s)=w(i)

where s is a measure of tracking and w (¢) represents the external signals. According to
the above definitions, k x sgn (s) yields a vector of elements k; sgn(s). If all k; satisfy
k; > sup,lw(t)], then s goes to zero in finite time. Define a sliding surface (see Slotine and
Li 1987)).
d ri—1

S;= (;ft + A}) e; where e;=y;—y;4 8)
where 4; is a positive scalar specifying the control bandwidth and y; , is the desired
trajectory. For systems of relative degree r;=1, Eqn. 8 simply yields s;=e;. Define a
virtual reference vector o, such that

§=W—ay; j=1,...,m ©)
For the system, Eqn. 4, we propose a control law
u=(G*(x))™ [, —f*(x)— k. x sgn(s)] (10)

where the hat denotes the estimates of the nonlinear functions. The bounds of the
elements k; may be derived by applying Barbalat’s lemma. Notice, that the existence of
uisinfluenced by the choice of the controlled variables y, i.e. the existence of the inverse
of G*(x). Assume that the parametric uncertainties in the nonlinear functions f* and G*
satisfy the following bounds

|FHx)—FHx)I<8; (11)
G*(x)=(I+ A)é"‘(x); |A;l <Dy

where (i=1,...,m), (j=1,...,m) and 6(A)<1. Consider a Lyapunov-like function
candidate

Vs, t)=3s"s (12)

Differentiating Ws, f) with respect to time and substituting Eqns. 4, 9, 10 and 11
yields

V=s"s=s"[(f*—f*)+ May—f*)— (I +A)k. x sgn(s)]
From this it is seen that if k;>k]Vi where k' satisfies

(I—D)k’' =5+ Dla,— f*(x)| + 9 (13)
where D is an m xm matrix with elements D;; and D is
Dn _D12 - Dlm
-D D —D,,,
D= : 21 22 . . 2 (14)
_Dml sz Dmm
the sliding condition
B m
V=—q"lsl= ) —nisi<0; #,>0 (15)

Hence, applying Barbalat’s Lyapunov-like lemma ensures that s—0 and thus e—0.




Sliding control of MIMO nonlinear systems 133

3. Systems in the form: x =f(x, u) with y = k(x)
Although Eqn. 1 is a fairly general model description, not all systems can be
modeled using this structure. For instance consider the following model class

x=f(x)+G(x)u+G;(u)x

which is nonlinear in the control input u. This justifies the use of a more general model
class

x=f(x,u)
y=h(x) (16)

Such a system will also be discussed in Section 4 in conjunction with the simulation
of a polymerization reactor.

3.1. Input—output linearization

For simplicity let us first consider a system where m= p. Differentiating y in Eqn. 16
with respect to time yields

y=H.f

9 .

The nonlinear control law (assuming that &/du (H_f) is non-singular)
.| o -t d
[ 2| [o- L]

y=0v

yields the linear system

which suggests v to be chosen as

v=F,—Kpé—Kye
where e=y —y, and K, and K are design matrices of appropriate dimensions chosen
such that the error equation é+ K¢ + K e =0 is stable. In the general case, let y; be the
smallest number of differentiations of the output y; for one of the derivatives #; to
appear, then

y}m=,r_,;;hj+ai(1.j!‘1hj)ﬁ; i=1...,m
or equivalently
y(lh) ﬁl
=f(x, u)+G(x, u)

Yrm) v
ﬂlm U

where f(x, u)=L}%h;(x) and

d @
E(‘L}l_lhl} e a‘; L}.“lhl)

G(x,u)=

d i)
—_ l?m"l _ [?m—l
a 1( ' hm) e aum( ‘F hm)
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The nonlinear control law (assuming that G(x, u) is non-singular)
i =(G(x,w) "' [v—f(x,u)]

yields y? =y, for j=1,...,m.

3.2. Sliding control
The corresponding sliding control law is found by defining a sliding surface

d it
sj=(a+lj) e; where 7y;>1

Let A=diag{4;}. Hence, V' can be written as
V=s"$=s"(f(x, u)+ G(x, wii—a,)
This suggests the control law
= G(x, W)y —f(x, w)— k. x sgn (s)] (18)

where the parametric uncertainties in the nonlinear functions are assumed to satisfy the
following bounds

I, (e, ) =T (x, w)| <&,
G(x, u)=(I+ A)('?(x, u), (A<D

where (i=1,...,m), (j=1,...,m) and 6(A)< 1. Hence, V can be written as
V=s"—(I+A)k. x sgn(s) +(7—f)+ A, — )]
From the expression for V it is easily seen that k must satisfy k,>k]Vi where:
(I — D)k’ =6+ Dla,—f(x, u)| +1

with the matrix D defined as in Eqn. 14 to achieve V< —5"|s| <0 which according to
Barbalat’s lemma implies that s—0 and thus e—0. Notice that the requirement that
both y and y must be measured to calculate the measure of tracking s is quite restrictive,
especially in cases with noise on y. If y is not available from measurements, some
algorithm for approximating y must be used. This is easy to realize if y is sampled at
high sampling rate.

To avoid undesirable control chattering a saturation function sat (s;/¢;) can be used
instead of sgn(s;) to smooth out the control input inside a boundary layer (Slotine
(1983)) where ¢; may be interpreted as the boundary layer thickness.

4. Simulation study
4.1. Simplified model of polymerization reactor

A simple two-stage polymerization reactor is illustrated in Fig. 1.

In the simulation study only the first stage of the process was considered. A more
detailed model is found in Singstad (1991). This was done by using x=[m,m,,, T,]" as
the state vector, u=[w,,,w;,,w,,]" as the input vector and y=[T;, p]" as the output
vector. m is the total mass of the reactor, m,, is the mass of polymer in stage 1, T, is the
temperature in the first stage, w,,, is the monomer feed rate, w;, is the initiator feed rate
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Figure 1. Two-stage polymerization reactor.

and w/, is the output feed rate from stage 1. For this system it is desirable to control the
temperature T; and pressure p. For simplicity we assume that u; =u;, =const. Hence,

x=f(x, u)
y=h(x)
where
Uy +u,
S )= ay) x, —x)—2us,
1
x {ayay(uz) (xy — x2)+u (a3 —x3))
1
and

(x)=[x3, a4x;x3]"
Differentiating y with respect to time (y;=2) yields
j’ =H xf

. 0 d .
y =5;(H"nf+b—u(ﬂ”f}u

- 0o 0 1 ]
- azxy; 0 azx,

G3— X3 a;a5(X; — X5)

X1 2(“2)”2’51

a,48,84(x; —X;)
ST )

where H, is the Jacobian

and

d
+ax,
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— a4, < (al(“z)l 2(x, _xl)__'f;}gf_z_)

2 _ X1 ;!
ox H: = @18584(U2) (g +U3)— G1820,(u5)"

(I.I 1/2

u
—x—;(ala:(“z)m(xl —X,)+uy(az —x3))
1

x(al(uz)m(x,—xz)—“;"‘z)

u;+u
+1x_( azuiy +a,a,(5)" x5+, X5)

u 1
+a, x—z(a1az(“z)”2(x1 — X )u (a; —x3))
1
The constants were chosen as
a,=004((kgs) )"*  a;=300K
a,=286K a,=1950Pa/(kg K)

In the simulation study the nominal model was simply perturbed as

a:(ﬁr,,f f)f= [105 0?5] HNS
P ) —05 0-6
o (ﬁm-—-(l +A)a(fo); A=[_0.3 _0-4]

The control law was calculated from Eqn. 18 as

e =—17Y. L 0
= [E(Hx.n] [y,uty.,—y)— ~ (H )k x sgn(s)]
To avoid chattering the control law was smoothed out in a boundary layer with

constant thickness i.e. f=[04 0-4]" by simply replacing the signum function with a
sat (-) function defined as

—1, if 5;<¢;
sat(s;/¢;)= sl if —¢i<si<e;
1, if s;=¢;

The desired output vector was simply chosen as y,+ ay,=or where o is a positive
constant and r is the commanded input vector. The simulation was performed with two
different controllers: (1) a nominal controller (switching gain: k=0) and (2) a robust
sliding controller) switching gain: k#0). The simulation results for a sampling rate of
2 Hz are shown in Figs. 2-3. Itis seen from the time responses that the sliding controller
yields good performance while the tracking for the nominal controller is poor. The
sliding controller compensates for model uncertainties, while the nominal case is
strongly affected by imprecise cancellations of model nonlinearities. In the nominal
case an undesirable chattering in one of the control efforts is also seen. Simulations
showed that the difference between the nominal controller and the sliding controller
varied according to changes in the operating conditions. In all cases however, we found
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Figure 2. Time responses and tracking errors for the nominal controller (dashed) and the
sliding controller (solid) given a commanded input vector: r=[S0X(K), 1600(bar)]™ for
temperature and pressure, respectively.
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Figure 3. Control inputs for the nominal controller (dashed) and the sliding controller (solid).
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the sliding mode controller to be the superior one. It should be noted that the steady
state error of the nominal controller could be eliminated by including integral action.

5. Conclusions

Sliding control of MIMO nonlinear minimum phase systems has been discussed.
Model uncertainties are compensated for by adding a discontinuous term to the
controller. Control of a polymerization reactor is used to illustrate the control scheme.
Simulation results show that the sliding controller improves the performance
significantly when model uncertainties are present.
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