“Adaptive control of nonlinear underwater robotic systems”

Authors: Thor I. Fossen and Svein I. Sagatun,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1991, Vol 12, No 2, pp. 95-105.

Keywords: AUV, ROV, adaptive control, input uncertainty

Abstract: The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF) is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1) an adaptive passivity-based control scheme and (2) deriving a hybrid (adaptive and sliding) controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat´s Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV).

PDF PDF (1132 Kb)        DOI: 10.4173/mic.1991.2.4

DOI forward links to this article:
[1] Motoki Takagi, Hayato Mori, Adiljan Yimit, Yoshihiro Hagihara and Tasuku Miyoshi (2016), doi:10.20965/jrm.2016.p0397
[2] Ida Louise G. Borlaug, Jan Tommy Gravdahl, Jørgen Sverdrup-Thygeson, Kristin Y. Pettersen and Antonio Loria (2018), doi:10.1002/asjc.1840
[3] I.-L.G. Borlaug, K.Y. Pettersen and J.T. Gravdahl (2018), doi:10.1016/j.ifacol.2018.09.506
[4] M. Bibuli, A. Odetti and E. Zereik (2019), doi:10.1080/20464177.2019.1707386
[5] Wenyang Gan, Daqi Zhu, Zhen Hu, Xianpeng Shi, Lei Yang and Yunsai Chen (2020), doi:10.1109/TIE.2019.2941132
[6] Ida-Louise G. Borlaug, Kristin Y. Pettersen and Jan Tommy Gravdahl (2021), doi:10.1109/TCST.2020.2977302
[7] Ida-Louise G. Borlaug, Kristin Y. Pettersen and Jan Tommy Gravdahl (2021), doi:10.1016/j.oceaneng.2020.108480
[1] CRAIG. J.J., HSU, P. SASTRY, S. (1986). Adaptive Control of Mechanical Manipulators, IEEE Int. Conf. on Robotics and Automation, San Francisco, April 1986.
[2] DAND, I. EVERY, M.J. (1983). An overview of the hydrodynamics of umbilical cables and vehicles, SUBTECH´ 83, Paper No. 10.4.
[3] FOSSEN, T.I. (1991). Nonlinear modelling and Control of Underwater Vehicles, Dr. ing. thesis, Division of Engineering Cybernetics, Norwegian Institute of Technology, June.
[4] FOSSEN, T.I. BALCHEN, J.G. (1988). Modelling and nonlinear self-tuning robust trajectory control of an autonomous underwater vehicle, Modeling, Identification and Control, 9, 165-177 doi:10.4173/mic.1988.4.1
[5] LEWIS, D.J., LIPSCOMBE, J.M. THOMASSON, P.C. (1984). The simulation of remotely operated vehicles, Proceedings R0V´84, pp. 245-251.
[6] SADEGH, N. HOROWITCH, R. (1987). Stability analysis of an adaptive controller for robotic manipulators, Proceedings IEEE Int. Conf on Robotics and Automation, Raleigh, North Carolina.
[7] SAGATUN, S.I. FOSSEN, T.I. (1990). Design study of the Norwegian experimental remotely operated vehicle, Division of Engineering Cybernetics, Norwegian Institute of Technology, Report no. 90-57-W.
[8] SLOTINE, J.J.E. DI BENEDETTO, M.D. (1990). Hamiltonian adaptive control of spacecraft, IEEE Trans. Automatic Control, 35, 848-852 doi:10.1109/9.57028
[9] SLOTINE, J.J.E. LI, W. (1987). Adaptive manipulator control: a case study, Proceedings IEEE Int. Conference on Robotics and Automation, pp. 1392-1401.
[10] SLOTINE, J.J.E. LI, W. (1990). Applied Nonlinear Control, Englewood Cliffs, New Jersey: Prentice-Hall.
[11] SPONG, M.W. ORTEGA, R. (1990). On adaptive inverse dynamics control of rigid robots, IEEE Trans. Automatic Control, 35, 92-95 doi:10.1109/9.45152
[12] YOERGER, D.R. SLOTINE, J.J.E. (1985). Robust trajectory control of underwater vehicles, IEEE Journal of Oceanic Engineering, 10, 462-470 doi:10.1109/JOE.1985.1145131

  title={{Adaptive control of nonlinear underwater robotic systems}},
  author={Fossen, Thor I. and Sagatun, Svein I.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}