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Adaptive control of nonlinear underwater robotic systems

THOR I. FOSSENYt and SVEIN 1. SAGATUN#
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The problem of controlling underwater mobile robots in 6 degrees of freedom
(DOF) is addressed. Uncertainties in the input matrix due to partly known
nonlinear thruster characteristics are modeled as multiplicative input uncertainty.
This paper proposes two methods to compensate for the model uncertainties: (1)an
adaptive passivity-based control scheme and (2) deriving a hybrid (adaptive and
sliding) controller. The hybrid controller consists of a switching term which
compensates for uncertainties in the input matrix and an on-line parameter
estimation algorithm. Global stability is ensured by applying Barbalat’s Lyapunov-
like lemma. The hybrid controller is simulated for the horizontal motion of the
Norwegian Experimental Remotely Operated Vehicle (NEROV).

1. Introduction

Non-destructive testing of underwater structures require high performance
manoeuvres of underwater mobile robots within and close to underwater installations.
Until recently, remotely operated vehicles (ROVs) have been used as a platform for
underwater robot manipulators. Now it is planned to use fully or partially autonomous
underwater vehicles (AUVs) in such operations. This imposes stricter requirements on
the control system particularly when macro-micro control i.e. control of the combined
motion between the AUV and robot manipulator is of interest. The schemes presented
in this paper are intended for the macro-micro control of such systems.

The underwater vehicle dynamics is strongly coupled and highly nonlinear. In
robotics, adaptive controllers have given high performance for nonlinear systems
(Craig, Hsu and Sastry 1986, Sadegh and Horowitch 1987, Slotine and Li 1987, Spong
and Ortega 1990). When designing controllers for underwater robotic systems, it is
necessary to compensate for model features such as nonlinear dynamics, nonlinear
kinematics and nonlinearities due to hysteresis, actuator dead-zones and partly known
thruster characteristics. Precise knowledge of the dynamic parameters are required.
This suggests a robust adaptive control scheme. This paper proposes two globally
stable adaptive controllers for underwater robotic systems. Input uncertainties due to
imprecise thruster characteristics are discussed in depth.

The paper is outlined as follows. Section 2 describes the equations of motion for
underwater vehicles. Section 3 discusses adaptive passivity-based control of under-
water vehicles. Hybrid adaptive control of underwater robotic systems with un-
certainties in the input matrix is examined in Section 4, while the simulation study is
presented in Section 5. Our conclusions are given at the end of the paper.
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2. ROV equations of metion

It is convenient to define the ROV state vectors according to the Society of Naval
Architects and Marine Engineers (SNAME) notation. The body-fixed linear and
angular velocity vector in surge, sway, heave, roll, pitch and yaw, is defined as:
§=(u,v,w,p,q,r)", where q is a virtual vector. The corresponding earth-fixed position
and Euler angle vector is defined as: x=(x, y,z, ¢, 6,¢)".

2.1. ROV dynamics and kinematics

The dynamic behaviour of an underwater vehicle is described through Newton’s
laws of linear and angular momentum. The equations of motion of such vehicles are
highly nonlinear and coupled due to hydrodynamic added mass, lift and drag forces,
which are acting on the vehicle. It is convenient to write the nonlinear underwater
vehicle equations of motion (Fossen 1991) as:

Mg +C(§)g + D(§)g +g(x)=1 (1
i=J(x)§ 2

where TeR" is a vector of control forces and moments, geR” and xeR". M isannxn
inertia matrix, C(§) is an n x n matrix of centrifugal and Coriolis terms, D(§) inann xn
dissipative matrix of hydrodynamic damping terms and g(x)is ann x 1 vector including
restoring forces and moments. These terms are described more closely in (Fossen and
Balchen 1988, Fossen 1991, Lewis, Lipscombe and Thomasson 1984). The vehicle’s
flight path relative to the earth-fixed reference frame is given by the kinematic equation
Eqgn. 2. Hence, J(x) can be interpreted as an n x n kinematic transformation matrix,
usually function of the Euler angles: ¢, and .

2.2. Thruster hydrodynamics

Small underwater vehicles usually operate over a considerable speed range with no
specific speed dominating. For such vehicles the performance of the ducted thrusters
will be a function of advance velocity V,, at the propeller, propeller revolutions n and
propeller diameter D. The non-dimensional open water characteristics (Dand and
Every 1983), are defined in terms of the open water advance coefficient J,;:

Va
J,=—=
° nD
The non-dimensional thrust and torque coefficients K, and K, and thruster open
water efficiency #, are defined as:

r Q Jo Ky
Ky=——"+% Kg= S Me=n T
™ oD " pninp> "7 22 K,

where p is the water density and T and Q are the propeller thrust and torque,
respectively. By carrying out an open water test a unique curve, where J, is plotted
against K ; and K, is obtained for each propeller. A typical plot is shown in Fig. 1. For
the NEROV thruster an open water test was performed in the towing tank at the
Norwegian Marine Technology Research Institute in Trondheim. The results from this
test are shown in Fig. 2.

In Fig. 3, the thruster forces are plotted versus the speed of advance V, and the
propeller revolution n. When designing the control system the nonlinearities imposed
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Figure 1. Non-dimensional thruster characteristics K, K, and 5, as a function of positive
advance coefficient J,, (ahead direction).

by the propulsion system should be compensated. The thruster force can be
approximated as:

Tx~b(J )nin| where b(J )=K {J )pD*

Here K iis the estimate of the non-dimensional thrust coefficient. For positive J,, Fig. 2
suggests that K, can be linearly interpolated as:

K (J)~a+pJ,

where a and f are two constants. The advance velocity at the propeller V, is related to
the vehicle’s speed V' by the wake fraction number w as:

Vo=(1—w)V

If the vehicle’s velocity V; is measured at time k, the advance coefficient J, ; can be
approximated as:

JA—wh
ok~ nt—]D

J

Here n, _, is the measurement of the propeller revolution at time k— 1. A control input
vector u=(u,,...,u,)" with elements:

u;=njlnj<>n;=sgn (u)lul)'/2

where n;is the propeller revolution of thruster j and sgn is signum function, shows that
the elements in the input matrix B can be expressed as:

Bf@)~b{J), i=1..m j=1.p
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Figure 2. Non-dimensional experimental thruster coefficient K versus negative and positive
advance coefficient J, for the NEROV vehicle.

Here b'j is the nonlinear approximation corresponding to thruster input u;=nn . Asa
result of this, the thruster force and moment vector 7 in Egn. 1 can be written as:
7=B(§)u where u;=njn], i=1..p

where B is the vehicle’s input matrix. The uncertainties in the experimental data suggest
an adaptive control scheme. Open water tests can be used a priori information for the
adaptive parameter update law.

2.3. Optimal distribution of propulsion and control forces

For underwater vehicles where p>n, ie. equal or more control inputs than
controllable DOF, it is possible to find an optimal distribution of thruster forces and
also control surface forces, for each DOF. Consider the energy cost function:

Min J =1u"Wu subject to t=Bu

where W is a positive definite, usually diagonal energy weighting matrix. For
underwater vehicles which have both control surfaces and thrusters, the elements in W
should be selected such that the use of control surfaces are much more inexpensive than
the use of thrusters ie. providing a means of saving battery energy. If BW™'B" is
nonsingular, it is straightforward to show that:

t=B;u where B, =W 'B"(BW 'B")"!

minimizes the energy cost function J. In the case when all inputs are equality weighted,
i.e. W=1I, the generalized inverse is simply:

B* =B"(BB") !

Notice that for the square case: B* =B .
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Figure 3. Thruster force T[N] as a function of propeller revolutions n[rev/min] for different
speeds of advance V, [m/s] (positive advance coefficient J ).

3. Adaptive control of underwater robotic systems

We will restrict our treatment to systems with equal or more control inputs than
controllable DOF, i.e. p=n.

3.1. B known

If B is known, the control input can be calculated as u=B* 1. Let us again consider
the underwater vehicle equations of motion, Eqn. 1 and Eqn. 2, which can be written as:

M*(x)x + C*(x, )% + D*(x, )%+ g*(x)=J  '(x)r
where

M*(x)=J""™™MJ*!
CHx, %) =J " T[C—MJ 1!
D*(x,%)=J TDJ !
g*x)=J""g

Assume the desired trajectory: %, x; and x,; to be bounded. Let £=x—x,; be the
tracking error and @ be the parameter error vector. Slotine and Li (1987) suggest
defining a measure of tracking s as:

s=%£+1% G

where 1 is a strictly positive constant which may be interpreted as the control
bandwidth. It is convenient to rewrite Eqn. 3 as:

s=x—X, where X, =x,— A¥
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To prove global stability (Slotine and Di Benedetto 1990) suggests using a Lyapunov-
like function:

Vs, 0,t)=3s"M*s +10T0

where I' is a symmetric positive definite weighting matrix of appropriate dimension.
Differentiating V with respect to time and using the skew-symmetric property
F(M*—2C*)x =0 yields:

V=—s"D*s+6"T6
+57(J Tt —M*%,—C*x,—D*%,— g*)
Fossen (1991) defines a virtual vector ¢, which satisfies the transformation:
X, =J(x)q,
Hence, the virtual reference vectors ¢, and §, can be calculated as:
4.=J " '(0)%,
G, =d 7 ()%, — I (DI 7 (2%,
We notice that the unknown terms M*, C¥, D* and g* can be parameterized as:
M*3, +C*%, + D*x,+ g*=J "[M§,+ C§,+ Dg,+ gl =1 " ®(x,§. 4, §,)0

where @ is an unknown parameter vector and @ is a known regressor matrix of
appropriate dimensions. We have here assumed that the terms M*, C*, D* and g* are
linear in their parameters. By using g, instead of x, in the parameterization, the
transformation matrix J(x) is avoided in the expression for the regressor matrix. This
yields:

V= —s"D*s+s"J T(x—®O)+0TH @
Let the control law be:
t=P0--JK s 5

where @ is the estimated parameter vector and K 5, is a symmetric positive definite design
matrix of appropriate dimensions. Then, the parameter update law:

0=—T " 1®(x,4,4,4)7 (s
yields
V=—s"(Kp+D*s<0

This is due to the fact that the dissipative term D >0 implies that D*=J " TDJ " >0.
Hence, Barbalat’s Lyapunov-like lemma ensures that s—»0 and thus the tracking error
vector £—0.

3.2. B unknown

The results in the previous section may be extended to underwater vehicles with
multiplicative input uncertainty i.e.

B(g)=(I+ 4)B(q), Ae{4:6(4)<1} ©)
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where 4 is an unknown n x n perturbation matrix, (4) is the maximum singular value
of 4 and B (q)is a known n x p matrix found from experiments. Substituting Eqn. 6 into
Eqn. 4 yields:

V=—s"D*s+s"J " T[(I + A)B,u— P01+ 0T
Defining
M=(I+4)"'M D=(+4)"'D
G=U+4)7'C  g=U+4)7'g
and
M4, + GG, + Dug, + g4=Ps(x, 4, 4,. §.,)0
V may be written as:
V=—s"D*s+s"J "I+ A)[B,u—® ,01+0Td
Taking the control law to be:
u=B;[®,0—J"K,s] ¢
where B, is a generalized inverse, the adaption law:
0= —I"'®}(x.4,4,,4) '(x)s
yields
V= —sT[D*+J (I + A4)J'K ,]s<0
where we have used the fact that 6(4)<1 implies that (I + 4)>0 and thus:
JTI+4)J7T>0

i.e. positiveness of a matrix is invariant of scaling. As in the previous case, Barbalat’s
lemma implies that s—0 and thus £—0.

4. Hybrid adaptive control

In this section we will derive a hybrid (adaptive and sliding) control scheme which
compensates for the uncertainty in the input matrix by adding a discontinuous term to
the existing adaptive control law. Previous work on sliding mode control of underwater
vehicles (Yoerger and Slotine 1985) does not compensate for the time-varying
behaviour of the control input matrix due to the thruster hydrodynamics, i.e. t= B(q)u.
In the following, it is conveneient to define the operators:

le = [le I! Ile’ ey |xn|]T
sgn (x)=[sgn (x,), sgn (x5),...., sgn(x,)]"

X.Xy= [x1y1,x2yz,---;xnyn]T

4.1. B unknown

Let us again consider an underwater vehicle in 6 DOF. Assume that the thruster
configuration matrix B satisfies a multiplicative uncertainty:

B(§)=(I+4)B,(q), |A;<Uy @®)
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This yields the following expression for V, cf Eqn. 4
V= —sTD*s+s"~T[(I + 4)B,u— ®6]+0'Td
Let the control law be
u=B} [P0 —JKps—k. xsgn(J's)] 9)

Here we have added a switching term k. x sgn (J ~'s) to compensate for the uncertainty
in the B matrix. Conditions on the non-negative switching gain vector k are found by
selecting the adaption law as:

=—TI'®%(x, 4.4, 40 '(x)s
which implies that ¥ may be written as:
V= — ST (D* + Kp)s +(J ~'s)T[ADPO—-TK ps) — (I + A)k. x sgn (T ~'s)]
The particular choice k;>k; Vi where K satisfies:
(I—- O =U|®0—J"Kps|+1, n,>0

where the elements U;; are defined in Eqn. 8 and the matrix U is defined as:

Uu —Uu “Uln
U= _(.’rZI Uzz ) _I-"{ZN
“Vnm _Unz - Uuu

yields:
V< —s"(D*+Kp)s—n"lJ 15| <0

Applying Barbalat’s lemma implies that s—»0 and thus x—0. According to the
Frobenius-Perron lemma (Slotine and Li 1990), the existence of a unique k vector is
guaranteed, namely:

kK=(—0)"'[UI0§—J"Kps| +1]

Note, that the design matrix K, directly accelerates the convergence rate. Chattering
imposed by the discontinuous term k. x sgn (J~'s) can be avoided by smoothing out
the control law within boundary layers, (Slotine and Li 1990).

5. Simulation study

The simulation study is based on a simplified model of the Norwegian Experi-
mental Remotely Operated Vehicle (NEROV). The NEROV vehicle is an autonomous
underwater vehicle which is designed at the Division of Engineering Cybernetics at the
Norwegian Institute of Technology. A brief sketch of the vehicle’s general arrangement
(Sagatun and Fossen 1990), is shown in Fig. 4. The vehicle is controllable in all 6 DOF.
The propulsion system is based on 6 independent DC permanent magnet motors with
propeller angular velocity measurements. The hybrid controller was simulated for the
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Figure 4. General arrangement of the NEROV vehicle.

horizontal motion of the NEROYV vehicle i.e. the coupled motion in surge sway and
yaw (§=[w,v,r]" and x=[x, y,]"). The NEROV model was simply chosen as:

186 0 0 0 268r 0]
M=|0 28 0|C=|—-268+ 0 0
0 0 29 0 (I
119 0 07 cosy —siny 07
D=| 0 208 0 |J=|siny cosy O
0 0 15 0 0 1
b 00 1 1 0 0
B=[0 6 0O 0 0 —11
0 06 —04 04 0 O

where =K pD* and K, is found from Fig. 2. The uncertainties in the thruster
characteristics were modelled as a diagonal matrix A with diagonal elements
[0:3-0-5 0-4]. The initial values for the parameter estimates were chosen as zero and the
sampling rate was set at 10 Hz. Fig. 5 shows the desired trajectories x,, y, and , and
tracking errors e,=x—Xx, €,=y—y, and e,={ —y, in surge, sway in yaw. The
propeller angular velocities u, _, were calculated from the hybrid control law Eqn. 9.
The control inputs are shown in the lower part of the figure. The simulations show that
all tracking errors converge to zero.

6. Conclusions

Two adaptive controlers for nonlinear robotic systems have been presented in this
paper. The first controller is an extension of an adaptive passivity-based controller for
robot manipulators and spacecrafts to nonlinear underwater robotic systems. The
second scheme is a hybrid controller utilizing both the results from the adaptive
controller and the theory of sliding mode control. Systems with input uncertainties are
discussed in depth. The paper shows how an adaptive and hybrid (adaptive and sliding)
controller can exploit the nonlinear thruster charactersitics found from open water
tests. The hybrid controller is simulated for the NEROV vehicle.
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Figure 5. Desired trajectories (left), tracking errors (right) and control inputs (bottom) for the
hybrid controller.
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