“Estimation of Regurgitant Volume and Orifice in Aortic Regurgitation Combining CW Doppler and Parameter Estimation in a Windkessel Like Model”

Authors: Bjørn A.J. Angelsen, S.A. Slørdahl, J.E. Solbakken, S.O. Samstad, D.T. Linker, H. Torp and H. Piene,
Affiliation: NTNU
Reference: 1991, Vol 12, No 1, pp. 3-12.

Keywords: Regurgitant orifice, noninvasive estimation, ultrasound, Doppler measurement

Abstract: A method for noninvasive estimation of regurgitant orifice and volume in aortic regurgitation is proposed and tested in anaesthesized open chested pigs. The method can be used with noninvasive measurement of regurgitant jet velocity with continuous wave ultrasound Doppler measurements together with cuff measurements of systolic and diastolic systemic pressure in the arm. These measurements are then used for parameter estimation in a Windkessel-like model which include the regurgitant orifice as a parameter. The aortic volume compliance and the peripheral resistance are also included as parameters and estimated in the same process. For the test of the method, invasive measurements in the open chest pigs are used. Electromagnetic flow measurements in the ascending aorta and pulmonary artery are used for control, and a correlation between regurgitant volume obtained from parameter estimation and electromagnetic flow measurements of 0.95 over a range from 2.1 to 17.8 mL is obtained.

PDF PDF (1121 Kb)        DOI: 10.4173/mic.1991.1.1

[1] GOLDWYN, R. WATT, T.B. (1967). Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties, IEEE Trans. Biomed. Eng., 14, 11-17 doi:10.1109/TBME.1967.4502455
[2] HATLE, L ANGELSEN, B.A.J. (1985). Doppler Ultrasound in Cardiology, 2nd ed..Philadelphia: Lea and Febiger, pp. 8-31.
[3] IHLEN, H., ENDRESEN, K., MYRENG, Y. MYHRE, E. (1987). Reproducibility of cardiac stroke volume estimated by doppler echocardiography, Amer. J. Cardiol., 59, 975-978 doi:10.1016/0002-9149(87)91137-4
[4] JAZWINSKY, A.H. (1970). Stochastic Processes and Filtering Theory, New York: Academic.
[5] LABOVITZ, A.J., FERRARA, R.P. KERN, M.J., et.al. (1986). Quantitative evalution of aortic insufficiency by continuous wave doppler echocardiography, J. Amer. Coll. Cardiol., 8, 1341-1347.
[6] MAUYAMA, T., KODOMA, K., KITABATAKE, A. et.al. (1986). Noninvasive evaluation of aortic regurgitation by continuous-wave Doppler echocardiography, Circulation, 3, 460-466.
[7] SAMSTAD, S.O., ROSSVOLL, O., HAUGLAND, T., BOLZ., K.D. SKJAERPE, T. (1989). Prediction of left ventricular pressure variation in early diastole with Doppler ultrasound, A new approach based on fluid mechanic theory, British Heart.
[8] SKJAERPE, T., HEGRENAES, L. IHLEN, H. (1985). Cardiac output, in Doppler Ultrasound in Cardiology, 2nd ed., L. Hatle and B. Angelsen, Eds.Philadelphia: Lea and Febiger, pp. 306-320.
[9] SLOERDAHL, S.A., SKJAERPE, T. PIENE, H. (1987). Aortic regurgitation evaluated by pressure half-time in a cardiovascular hydromechanical simulator, Heart Vessels, suppl. 3:9.
[10] TEAGUE, S.M., HEINSIMER, J.A., ANDERSON, J.L. et.al. (1986). Quantification of aortic regurgitation utilizing continuous wave doppler ultrasound, J. Amer. Coll. Cardiol., 8, 592-599.

  title={{Estimation of Regurgitant Volume and Orifice in Aortic Regurgitation Combining CW Doppler and Parameter Estimation in a Windkessel Like Model}},
  author={Angelsen, Bjørn A.J. and Slørdahl, S.A. and Solbakken, J.E. and Samstad, S.O. and Linker, D.T. and Torp, H. and Piene, H.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}