“State Space Model Predictive Control of a Multi Stage Electro-metallurgical Process”

Authors: Jens G. Balchen, Dag Ljungquist and Stig Strand,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1989, Vol 10, No 1, pp. 35-51.

Keywords: Optimal control, predictive control, non-linear control system, state-space methods, iterative methods, on-line operation

Abstract: The paper deals with the proposed application of a novel technique for Model Predictive Control to a multistage electrometallurgical process. The novel control technique is based upon high speed repetitive simulation of a non-linear state space model of the process including relevant constraints, and searching in a parameterized control space by an efficient optimization routine until an optimal set of control actions has been found. This MPC-technique is not limited to linear processes with quadratic objective functionals and is therefore believed to offer a major improvement to the control of many industrial processes where the standard, linear control solutions fail because of non-linearities and constraints in the process system.

PDF PDF (1501 Kb)        DOI: 10.4173/mic.1989.1.3

DOI forward links to this article:
[1] N.L. Ricker and J.H. Lee (1995), doi:10.1016/0098-1354(94)00105-W
[2] Jens G. Balchen, Dag Ljungquist and Stig Strand (1989), doi:10.4173/mic.1989.2.1
[3] S. Strand and J.G. Balchen (1991), doi:10.1016/B978-0-08-041263-4.50076-2
[4] S. Strand and J.G. Balchen (1990), doi:10.1016/S1474-6670(17)51955-2
[5] S. E. Benattia, S. Tebbani and D. Dumur (2019), doi:10.1002/rnc.4754
[1] BALCHEN, J.G. (1984). A quasi-dynamic optimal control strategy for non-linear multi-variable processes based upon non-quadratic objective functionals, Modeling, Identification and Control, 5, 195-209 doi:10.4173/mic.1984.4.2
[2] BALCHEN, J.G., LJUNGQUIST, D. STRAND, S. (1988). Predictive Control Based upon State Space Model, 1988 American Control Conference.
[3] CLARKE, D.W., MOHTADI, C. TUFTS, P.S. (1987). Generalized predictive control, Part I and II Automatica, 23,137-160 doi:10.1016/0005-1098(87)90087-2
[4] CURLER, C.R., RAMAKER, B.L. (1979). Dynamic Matrix Control - a Computer Control Algorithm, AIChE 86th National Mtg, Houston, TX, Apr. 1979.
[5] GARCIA, C.E., PRETT, D.E. (1986). Advances in Industrial Model Predictive Control, CPC III, Asilomar, Calif., Jan. 1986.
[6] LJUNGQUIST, D. (1986). Predictive Control Based on Pontryagin´s Maximum Principle, In Norwegian, Thesis.Sivilingeniør. Division of Engineering Cybernetics, The Norwegian Institute of Technology, Trondheim. Dec. 1986.
[7] MARCHETTI, L., MELLICHAMP, D.A., SERORG, D.E. (1983). Predictive control based on discrete convolution models, Ind. Eng. Chem. Proc. Des. Develop., 22,488-495 doi:10.1021/i200022a025
[8] MEHRA, R.K., S. MAHMOOD. (1985). Model Algorithmic control, Chapter 15 in Distillation Dynamics and Control, ed. P.B. Desphande.Instruments Society of America.
[9] PONTRYAGIN, L.S., BOLTIANSKII, V.G., GAMKRELIDZE, R.V., MISHCHENKO, E.F. (1962). The Mathematical Theory of Optimal Processes, J. Wiley and Sons.
[10] REID, J.G. (1981). Output predictive algorithmic control: precision tracking with application to terrain following, AIAA, Journal of Guidance and Control, Vol. 4, No. 5, Sept-Oct, 1981.
[11] RICHALET, J.A., RAULT, A., TESTUD, J.D. PAPON, J. (1978). Model Predictive Heuristic Control : Applications to Industrial Processes, Automatica, 14, 413-428 doi:10.1016/0005-1098(78)90001-8
[12] STRAND, S. (1987). System for Predictive Control Based on Repetitive Simulation of a Dynamic Model with a Parameterized Control Vector, In Norwegian, Thesis.Sivilingeniør, Division of Engineering Cybernetics, The Norwegian Institute of Technology, Trondheim. March, 1987.

  title={{State Space Model Predictive Control of a Multi Stage Electro-metallurgical Process}},
  author={Balchen, Jens G. and Ljungquist, Dag and Strand, Stig},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}