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The paper deals with the proposed application of a novel technique for Model
Predictive Control to a multistage electrometallurgical process. The novel
control technique is based upon high speed repetitive simulation of a non-linear
state space model of the process including relevant constraints, and searching in
a parameterized control space by an efficient optimization routine until an
optimal set of control actions has been found. This MPC-technique is not limited
to linear processes with quadratic objective functionals and is therefore believed
to offer a major improvement to the control of many industrial processes where
the standard, linear control solutions fail because of non-linearities and con-
straints in the process system.

1. Introduction

Since the time of Norbert Wiener, it has been known that optimal feedback
control algorithms for dynamic processes will, in some way or other, reflect the
models which describe the behaviour of the process and its environment and the
measure of the performance to be minimized. Optimal control as derived by Pontry-
agin et al. (1962) is an example of this. Later, numerous contributions in the
literature present control techniques which are model based. The algorithms for
process control which were introduced from the mid 1970s, MAC, DMC and
IDCOM are more recent examples of this (Richalet et al, 1978; Cutler
and Ramaker, 1979; Reid, 1981; Marchetti, Mellichamp and Seborg, 1983; Mehra
and Mahmood, 1985; Garcia and Prett, 1986; Clarke, Mohtadi and Tuffs, 1987).
The latter type of control algorithms, often referred to as Model Predictive Control
(MPC), computes the process variables over a future time interval. The control vari-
ables which will minimize a performance criterion (objective functional) over this
time interval, can be determined. If the process is regarded as linear and the objec-
tive functional is quadratic, a closed form solution is found which is easy to imple-
ment in a computer system. This is not the case if the process is non-linear, has a
non-quadratic objective functional or is constrained. This has been generally known
for a long time.

A simple way of deriving optimal control of a general dynamic process (non-
linear and constrained) is to parameterize the control variables in a simple manner
and optimize the control variables by searching in this parameter space by simulat-
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Figure 1. Components of the total system for predictive control.

ing the process behaviour over a future time interval using a fast repetitive com-
puter (Strand 1987). This is a promising technique which has been employed in this
paper. An alternative technique is to apply the Pontryagin Maximum Principle
(Ljunguist 1986) which, due to its more efficient mathematical technique, yields
better results in certain cases.

A block diagram illustrating the model-based repetitive dynamic optimization
technique is shown in Fig. 1. It is based upon a state space model of the process
which is used in two modes (any kind of dynamic model which can be reset can be
used). One model is used in a combined state- and parameter estimator which
updates the model states and parameters to agree with the behaviour of the real
process. This makes it possible to adjust the other model which is running repeti-
tively at a much higher speed. This second model can be identical to the first or may
be reduced in complexity. The major prerequisite for the present method is the
availability of a high speed on-line computing capacity. This should allow repetitive
simulation and optimization calculations to be done so fast that the search in the
control parameter space converges nearly instantaneously compared to the
dynamics of the real process. Such computer capacity is available today at a reason-
able price, which makes this technique applicable to most processes encountered in
the process industry. In case the process dynamics is too fast for the simple search-
ing technique suggested, a modified algorithm is available which employs a LQG-
strategy in parallel with the searching strategy (see Balchen et al. 1988).

2. Properties of the present method
The properties of the present method compared to conventional process control
techniques and MPC strategies based upon a linear model are briefly as follows:

The process (and its model) may be non-linear, highly interacting and with con-
straints on both control variables and state variables provided the optimization
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algorithm converges. This becomes a matter of the relative bandwidth (speed) of
the optimization and the process. A similar statement is out of the question for
other available process control strategies.

The technique is very straightforward and obvious and directly appeals to oper-
ators because of its simplicity.

The objective functional to be employed should be based on economic aspects
(profit functions) including the cost of raw materials, energy, labour, main-
tenance etc. and value of the products.

The present technique, as well as other MPC techniques, assumes the avail-
ability of a reasonably good model of the process which is continuously updated
against the real process. In many cases of industrial practice, this requirement is
not controversial at all. In other cases it will limit the applicability of the
method.

3. 'The application of model predictive control to a multistage electrometallurgical

process

A simplified block diagram indicating how the multistage electrometallurgical
process operates, is shown in Fig. 2. Each unit is identical and all units in the same
row are electrically connected in series. Each unit is being fed with the raw material
which appears in two aggregates, A and B. These aggregates are chemically similar,
but differ in energy content. The product of this process is a valuable metal and a
less valuable gas. Each of the units can be manipulated by the flow of the two
different aggregates of feed, by the electric current through the unit and additional
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Figure 2. The multistage electrometallurgical process.
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heating through a special circuit. The main objective of the control system is to
maintain the mass and energy balances in each unit, that means maintaining the
concentration of the active material and the temperature at optimal values. Due to
operational reasons, the temperature must be kept between rather narrow con-
straints. The energy balance is influenced by the ratio of the two aggregates of feed,
by the electric current and the additional heating. Additional heating is undesirable
because it is unproductive. The yield of the process is not constant, but influenced
by certain impurities in the feed, and must be regarded as a disturbance. Since all
units in one row are connected in series, the electric current may be regarded as
both a control variable and a disturbance. Thus this process becomes very inter-
esting for the type of control presented in this paper, since

The control actions are discontinuous (quantised).

There are severe constraints on both control variables and states.

The units are highly interacting and interdependent.

All units have identical models, but with different parameters and states.

The objective functional of the system is easily established in terms of economic
factors.

4. The model

First a detailed, precise description of the process dynamics was developed. The
result was a model containing about ten state variables for each unit and several
unknown non-linear functions and unknown parameters. Model reduction to five or
six states per unit could be done by aggregation of related effects. Simulation results
showed that even two states represented the dynamics of an undisturbed unit in a
satisfactory way. These results seemed to fit perfectly with the control strategy illus-
trated in Fig. 1.

A simplified model with three state variables per unit is to be used in the opti-
mization.

In the identification/estimation algorithm two or three extra state variables are
used to make the model fit the real process.

The extra variables may be regarded as time-varying parameters in the simplified
model. The almost unpredictable dynamics of the contents of inpurities and the
other disturbances in the units however, make the assumption of constant para-
meters during the optimization horizon nearly as good as any other assumption.
On-line estimation of these parameters then assures updated estimates before every
new optimization. The slow dynamics of the actual process makes this strategy
applicable even with a conventional personal computer.

The simplified model may be developed based upon elementary energy and mass
balances.

(i) Energy balance in unit i
The following factors are taken into account in the energy balance:

energy due to the electric current that flows through the unit
additional heating
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energy contents in the feed aggregate A
energy contents in the feed aggregate B
energy contents in the produced metal removed at certain points in time
energy in the escaping gas
energy loss to the surroundings
other losses
Aggregate A contains more energy than aggregate B.

(i) Mass balance of the active component in unit i

The rate of change of the active component in the unit equals the difference between
the sum of the two aggregates of the feed and the consumption of the component in
the reaction of the unit. Moreover, some of the active component is inevitably
removed each time the product is removed.

(iij) Mass balance, total mass in unit i.

Aggregates A and B of the feed come into the unit, whilst the metal product
together with a small amount of feed is tapped off and the gas is continuously
escaping. This leads to the following differential equation (nomenclature listed at the
end of the paper):

o
Xai = [fiI? + g = ay(xy; = a;) + ag(as — x,uy;
1i

— (a3 + agx;uy; + (as — a1 £2)1;]

_ (a;3 — x3)° I
Xy = T hoa. [ayaluy;: + ) — ays fo 1 — a6 X3 f34]
i3
X3 = ayauy; + uy) — ay; fr: I — (ays + ay6 X20) fa; (1)

where
J1i= by + ag X5 — Qg X1y — A1 X 4 Xy
f2i = b3 — ay1(xy; — ay,)

bgiays

Sai= x5 —
Qi3 — Xy

Each unit may be electrically short-circuited. If this is done to unit number i, the
effect is that I, = 0. I, therefore represents three control variables; the main current
being fed through all the units, additional current fed through all units in a series
and the possibility of short circuiting each unit individually. The aggregate A of the
feed is fed in batches (u,;), whilst the other control variables are continuous. Because
of the nature of the process equipment, some of the control actions are implemented
manually by the operators.

In the model (1), three different constants appear. The g;’s are constants common
to all the units, while the b;’s may vary from unit to unit. Moreover f}; indicates
time-varying functions; f); equals the internal electrical resistance of the unit, f5;
equals the yield factor and f;; is the predicted mass removal. f;; and f,; are very
simplified expressions. Therefore b,; and b,; have to be updated in the estimation
algorithm, and will typically change from one optimization to the next.
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5. The objective functional

The simple model presented in the previous section can only be justified when
the concentration of the active component is kept between 7 and 13 per cent, and it
is desirable to keep the concentration in the middle of this range. For operational
reasons the temperature must be kept between narrow limits. Equation (1) is scaled
such that the temperature varies around 1-0, and this relative temperature is to stay
within 4 3 per cent.

These two constraints are taken care of by means of penalty functions in the objec-
tive function. The other terms in the objective function reflect economic consider-

ations:
o+ T ny
J = J: [ Z Lj] dt (2)
1) i=1

L;= =P frid; + Bi((Ry; + f1)]; + €)l;
+ Bauy; + Byuzy + Pary + s X3
+ ¢ 1dx1) + c2dx2) (3)

¢1i(+) and cy( ) are the penalty functions which keep the temperature and concen-
tration respectively within the given boundaries. Different functions may be used,
but their value should be nearly negligible in the permitted area and increase rapidly
when the boundaries are reached (or just before). A penalty function suggested by
Balchen (1984) has the desired properties. An additional linear penalty on relative
temperatures above 1-0 reflects increased unit maintenance.

The objective functional (2) has two important qualities:

Each of the objective functions (L) represent economic factors (expenses or
incomes) or penalties with scaling factors to be chosen.

The economic scaling factors are obvious whereas the scaling factors of the
penalty functions are easily tuned until the constraints are maintained in a satis-
factory way.

This results in an optimal control problem which can be solved using an efficient
searching algorithm.

6. Solution strategy

Given an arbitrary, non-quadratic objective functional and a non-linear state-
space model, there are several ways to reach the optimal choice of the control
vector. The following outlines the strategy used to obtain the results in this paper.

The original problem may be formulated as:

min Ju(t))

to+T

Ju(t)) = S[x(to + T)] + ‘ L(x(t), u(t), 1) dt @
X(t) = f(x(2), u(t), 1)

where U is the space of admissible controls, i.e. the control variables may be subject
to hard constraints. In the present case, hard constraints are not applied to the state
variables, since we are using penalty functions to limit them.
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To make this original problem formulation numerically solvable, the control
variables have to be parameterized, leading to somewhat different formulations
and to suboptimal solutions of the given problem. A piecewise constant para-
meterization of each control variable is chosen since this is a practical way of imple-
menting the control signal in the process. Thus the problem may be stated as
follows:

min J(0)
Be@

o+T

J(0) = S[x(t, + T)] + L(x(t), 8, t) dt )
X(t) = fi(x(1), 8, 1)

where 6 is the set of parameters describing the control variables. Now the original
problem (4) has been turned into a finite-dimensional numerically solvable opti-
mization problem.

The dimension of the parameter space has a great influence upon the solution
speed, and should be kept to a minimum. However it is known that reduction of the
number of parameters describing each control variable will make the corresponding
suboptimal solution less satisfactory compared to the optimal solution of the orig-
inally stated problem in (4). Hence the choice of parameterization is a trade-off
between solution speed and the quality of the suboptimal solution achieved.

In the present example as few as three parameters for each control variable are
used. This turns out to be a suitable number in process control cases where trajec-
tory tracking is not required. The discretization intervals do not have to be equal
lengths (Balchen et al. 1988).

Moreover a quite simple optimization technique is used. The gradient of J(6)
with respect to 0 is computed experimentally, perturbing each parameter in turn
and measuring the corresponding change in J(8). The search in the admissible
parameter space is performed using a modified Newton algorithm, which aggregates
the information retrieved by sequential computation of the gradients at points in the
parameter space, in an approximation to the inverse Hessian. Special care is taken
for parameters which have reached their constraints, according to the constraints on
the control variables. In order to reduce the number of gradient computations, the
line search in each direction is done quite accurately.

This optimizing technique is more time-consuming than those more mathemati-
cally advanced, such as the Pontryagin Maximum Principle. But it is easy to imple-
ment in a parallel processing system, since the gradient components may be
computed on different processors. Furthermore it is an advantage that process oper-
ators are able to understand how optimal control is computed using this technique.
Finally, if the solution speed is too slow compared with the process dynamics, which
is not the case in the present example, a LQG-strategy with immediate feedback
around the computed optimal trajectory is suggested (Balchen et al. 1988).

7. Simulation experiments

As pointed out in the presentation of the model, there are several uncertainties
related to the parameters of the simplified model. Simulation experience shows that
the inaccuracies related to the flow of feed and the removal of the produced metal
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Figure 3. (a) and (b) Step responses, control variables unchanged.

only contribute marginally to the process dynamics. Changes in the electrical resist-
ance and the yield factor of each unit, however, represent considerable disturbances
as can be seen from Fig. 3(a) and 3(b).

The two curves in Fig. 3(a) illustrate the temperature responses due to 5 per cent
reduction in the yield factor (at t = 45 h) and 5 per cent increase in the electrical
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resistance in the unit when the control variables are kept unchanged. Figure 3(b)
shows the corresponding changes in concentration of the active component in the
unit. Both temperature and concentration must remain within narrow limits,
however, therefore the control variables have to change.

In the simulations, 4 units are studied, units 1 and 2 in row number 1 and units
3 and 4 in row number 2. The electrical current can be somewhat different in
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each row (see Fig. 2). Units 1 and 3 are exposed to disturbances in the yield factors,
increase and reduction of 5 per cent respectively, while units 2 and 4 are disturbed
by decrease and increase of 5 per cent respectively in the electrical resistance of the
unit. The step disturbances occur at the points in time illustrated in Fig. 4(a) and
4(b). It is assumed that the real time estimator described in Fig. 1 is able to give
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estimates of these disturbances within a period of 27 h. The optimization horizon is
48 h. Moreover the control parameters are updated every 2-7 hour.

The disturbances indicated above are not supposed to be reasonable from a
process engineer’s point of view, but it is known that the step sizes are reasonable
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Figure 9. Use of aggregate B.

and that the disturbances will be a challenge to the optimization algorithm. The
reader should be aware that the dynamic behaviour of the yield factor and the
electrical resistance of the unit, still apply in the simplified model, i.e. just the para-
meters b,; and by; in (1) are changed in steps. The exact numerical values of the
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different prices in the objective functional are not important to a fundamental inter-

pretation of the optimization results.

Many conclusions can be drawn from the simulation experiments. However, we
wish to limit the amount of comments by just pinpointing the most important

results obtained (see Figs. 5-16).
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Increase in the yield factor in unit 1 calls for an increase of electrical current in
this row. The temperature in unit 2, however, increases as the row current
increases. Thus the current cannot increase very much if the resistance in unit 2

does not decrease for some reason (Fig. 13).

The increase of current in units 1 and 2 demands increase in the feed. The

responses in the feed of the two different aggregates A and B due to
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changes in yield factor in unit 1 and resistance in unit 2 reflect the importance of
the energy balance, and the fact that aggregate A contains more energy than
aggregate B (Figs. 9, 11 and 13).

Similar statements are valid for the control variables in units 3 and 4 (Figs. 10,
12 and 13).

In the present experiments there is no need for adding auxiliary heat or short
circuiting the units, but such conditions may occur under severe disturbances.
The main peaks in the computational effort (Fig. 14) occur immediately after the
disturbances are detected, except the one at t = 150 h. The latter is caused by
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the objective functional being flat near optimum and an imperfect searching
algorithm. Figure 14 is scaled from 0-0 to 1-0. With the present algorithm
installed on an IBM AT, 1-0 corresponds to 10 min. Updating the control
parameters with a 2:7 h interval, this means that more than 50 units can be
controlled by an IBM AT. This updating interval is small compared to the
process dynamics, and a parallel LQG-strategy is not required.

Figure 15 shows the net profit rate of the process. The step disturbances have
direct consequences for this rate. The peaks are due to the time-delay in the
estimation of the disturbances. As shown in Fig. 16 the sum of penalty functions
is nearly negligible.

The following statements are justified by the simulation experiments.

8.

A reasonable objective functional based upon economic considerations and
physical interpretation is easily derived.

When the state variables are highly coupled through the dynamics and the
control variables it is not straightforward to work out how the control variable
should change due to physical disturbances or changes in the operational condi-
tions. It is not difficult, however, to understand the optimality of the new con-
trols derived by the present strategy.

Conclusion
From an economic point of view optimal control should be based on non-

quadratic objective functionals. The corresponding control variables will drive the
process over a wide range of operational conditions. Therefore in many cases non-
linear models and constraints have to be considered. Existing control strategies
cannot handle such problems in a satisfactory way. The proposed method, however,
permits the flexibility required as illustrated by a simple simulation experiment.
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Nomenclature

Xy temperature in unit number i

Xg; concentration of active component in unit number i
X3; total mass of unit number i

I; the current through unit i

Uy; feedrate of aggregate A to unit i

Uy feedrate of aggregate B to unit i

Uy additional heating to unit i

iy the initial time for the optimization

J the objective functional

L, the objective function (cost function) for unit number i
T the optimization horizon
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S(x(to + T)) a scalar function weighting the final value of the state vector

n, number of units
il prices corresponding to the different terms in the objective functional
(in Nkr)
a;, by model parameters, i indicates unit No.
1i internal resistance, unit i
fa yield factor, unit i
fai predicted mass removal, unit i
R, ¢ parameters used to compute the voltage across unit i.
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