“Convergence analysis of some decentralized parameter estimators”

Authors: Rolf Henriksen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1989, Vol 10, No 1, pp. 13-34.

Keywords: Decentralized estimation, least squares method, instrumental variable methods, bootstrap estimators, convergence analysis, adaptive control

Abstract: Parameter estimators based upon standard estimation techniques, viz, least squares (LS) methods, instrumental variable methods, etc. may occasionally have difficulties with systems having a somewhat ill-conditioned nature, e.g., stiff systems. The robustness of the estimator can, however, be significantly improved by employing some kind of decentralized estimation techniques. The method presented here utilizes certain moving average filters and a system of parallel estimators, where the moving average filters are used to prefilter the input-output data. The form of these filters depends upon the estimated model, and the decentralized estimator will therefore usually have to be employed in a bootstrap fashion. The convergence properties of this bootstrap estimator are analysed, and necessary and sufficient conditions for local convergence of some decentralized estimators based upon LS or IV techniques are derived.

PDF PDF (2093 Kb)        DOI: 10.4173/mic.1989.1.2

DOI forward links to this article:
[1] Rolf Henriksen (1992), doi:10.4173/mic.1992.3.2
[2] Rolf Henriksen and Erik Weyer (1990), doi:10.4173/mic.1990.4.4
[3] Rolf Henriksen (2000), doi:10.4173/mic.2000.2.3
[4] R. Henriksen (1991), doi:10.1016/S1474-6670(17)52460-X
[5] R. Henriksen and E. Weyer (1990), doi:10.1016/S1474-6670(17)52001-7
[6] E. Weyer (1991), doi:10.1016/S1474-6670(17)52472-6
[1] ANDERSON, B.D.O., JURY, E.I. (1976). Generalized Bezoutian and Sylvester matrices in multivariable linear control, IEEE Trans. on Automatic Control, 21, 551-556 doi:10.1109/TAC.1976.1101263
[2] CLARY, J.P. FRANKLIN, G.F. (1984). Self-turning control with a priori plant knowledge, Proc. 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada, pp. 369-374.
[3] HENRIKSEN, R. (1988). Convergence analysis of some decentralized parameter estimators, Proc. 8th IFAC/IFORS Symposium on Identification and System Parameter Estimation, Beijing, China, pp. 447-452.
[4] JURY, E.I. (1974). Inners and Stability of Dynamic Systems, John Wiley and Sons. New York.
[5] KAILATH, T. (1980). Linear Systems, Prentice-Hall Englewood Cliffs, NJ.
[6] SÖDERSTRÖM, T. STOICA, P.G. (1983). Instrumental Variable Methods for System Identification, Springer-Verlag doi:10.1007/BFb0009019
[7] STOICA, P.G. SÖDERSTRÖM, T. (1981). Asymptotic behaviour of some bootstrap estimators, International Journal of Control, 33,433-454 doi:10.1080/00207178108922934
[8] VETTER, W.J. (1970). Derivative operations on matrices, IEEE Trans. on Automatic Control, 15, 241-244 doi:10.1109/TAC.1970.1099409
[9] VETTER, W.J. (1973). Matrix calculus operations and Taylor expansions, SIAM Review, 15, 352-369 doi:10.1137/1015034
[10] YOUNG, E.E., HENRIKSEN, R. MELLICHAMP, D.A. (1987). A multi-rate decentralized parameter estimation method for stiff systems, Proc. 26th IEEE Conference on Decision and Control, Los Angeles, California, pp. 1902-1907.

  title={{Convergence analysis of some decentralized parameter estimators}},
  author={Henriksen, Rolf},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}