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Convergence analysis of some decentralized parameter estimators
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Parameter estimators based upon standard estimation techmiques, viz. least
squares (LS) methods, instrumental variable methods, etc. may occasionally have
difficulties with systems having a somewhat ill-conditioned nature, e.g, stiff
systems. The robustness of the estimator can, however, be significantly improved
by employing some kind of decentralized estimation techniques. The method pre-
sented here utilizes certain moving average filters and a system of paraliel estima-
tors, where the moving average filters are used to prefilter the input-output data.
The form of these filters depends upon the estimated model, and the decentral-
ized estimator will therefore usually have to be employed in a bootstrap fashion.
The convergence properties of this bootstrap estimator are analysed, and neces-
sary and sufficient conditions for local convergence of some decentralized estima-
tors based upen LS or IV techniques are derived.

1. Introduction

Parameter estimators based upon standard estimation techniques, viz. least
squares (LS) methods, instrumental variable (IV) methods, etc. do occasionally have
difficulties with systems that have a somewhat ill-conditioned nature, e.g. stiff
systems. This is a particularly severe drawback with many self-tuning and adaptive
controllers. For example, small variations in the estimated plant parameters can
cause the process gain to change by orders of magnitude and even change sign. The
same variations can also cause poles of the estimated plant to appear as complex
conjugate pairs even though they actually are distinct and strictly real. An example
of this can be found in the papers by Young et al. (1987) and Henriksen (1988).

By employing certain decentralized estimation techniques it is, however, possible
to improve the robustness of the estimator significantly. The method presented in
this paper is based upon the fact that if part of the dynamics of the plant was
known, one could, by carefully filtering the output and/or the input, actually “filter
out’ this known part of the plant model and end up with a reduced-order model.
This approach is used by Clary et al. (1984) to remove the known dynamics and
estimate only the unknown dynamics. In this paper the entire plant model will be
considered to be unknown. The estimator is split up into smaller sub-estimators
which are fed with properly filtered input-output data, enabling us to estimate the
entire model in a decentralized fashion. This paper will be restricted to the case of
two sub-estimators.
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14 R. Henriksen

The filters used to filter the input—-output data depend upon the estimated
model. Since the latter generally differs from the true model beforehand, the pro-
posed decentralized estimator will usually have to be employed in a bootstrap
fashion. The main topic of this paper is the convergence properties of this bootstrap
estimator.

The paper is organized as follows. In § 2 there is a brief outline of the system
model being used and some of the main underlying assumptions. Section 3 presents
the form of three different decentralized estimators based upon LS techniques (one
estimator) and IV techniques (two estimators) and shows how these estimators can
be employed as bootstrap estimators. Section 4 is devoted to convergence analysis
of these bootstrap estimators, and necessary and sufficient conditions for local con-
vergence are derived for two of them. Some examples and comments on con-
vergence rates etc. are presented in § 5. A discussion of the results and proposals for
future work are given in § 6.

2. System description
Consider a system described by the discrete-time model

Alg ")y, = Blg~ "), + v, M

where y, is the output at time ¢, u, is the input, and v, is the disturbance or residual.
The process {v,} is assumed to be a zero-mean stochastic process with a rational
non-singular spectral density matrix (for the sake of simplicity we have occasionally
assumed that v, = O for all 1). The processes {u,} and {v,} will generally be assumed
to be independent.

The matrix polynomials A(g ") and B(g ') are assumed to be of the form

Ag N=1+A1g " +...+A4,@"™ 2
Bg ") =B,q" ' +...+ B, @™ 3)

where ¢~ * is the background shift operator. A(g~') and B(g~ ') are assumed to be
left coprime, It is further assumed that the polynomial 4(g ') can be factored as

Alg™") = A NAxg ) = Ag™ NAL™Y) @

where
A@)=I+Alqg ' +...+ Al g™ (5)
A g N =1+Alg" +...+ AL, g™ (6)

and where n, + n, = n,. The assumption that 4,(¢" ") and A,(¢ ') commute (Eqn
(4)) is of course limiting the use of the method which is about to be presented. It
generally applies only to SISO (single-input single-output), MISO (multi-input
single-output), and diagonal form MIMOQO (multi-input multi-output) models.

3. Decentralized estimation of reduced-order models

Assume the parameters in the polynomials 4,(g~ ') and B(g ') are all known.
Defining the following moving average of the output y,,

w, = A" )y, (7
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we can rewrite (1) as (reduced-order model M, consisting of, e.g., the slow modes)

Ay(q” l)wt = Blg~ 1)“: +u 8)

Now, in order to estimate the polynomial A,(g~!) we could use a LS method (if v, is
white), an IV method (if v, is coloured), etc. Sufficient conditions for consistency
could be as follows: (1) the system described by the model (8) is linear, of finite
order, and asymptotically stable; (2) the input process {,} is stationary, ergodic
with respect to second-order moments, and persistently exciting of order n,; (3) the
input u, and the disturbance v, are independent for all ¢ and s; (4) there is a param-
eter vector f* so that A; (g™ %, f*)B(g ') = G,(g™ "), where G4(g~") is the transfer
function of the system described by M, ; and (5) the vector f* is unique, see Séders-
trom and Stoica (1983). Note that these assumptions are not always necessary.

In a similar fashion, assume the parameters in the polynomial 4,(g ") are all
known. Defining the following moving average of the output y,,

= Al(q_l)yﬂ 9
we can rewrite (1) as (reduced-order model M, containing, €.g., the fast modes)
Ayl 1)2‘ = Hq_l)ur + 0, (10)

In order to estimate A,(g~!) and B(g~') we could again employ a LS method, an IV
variant, etc. Sufficient conditions for consistency are similar to the ones given above.
Note that u, in this case would have to be persistently exciting of order n, + ng.

Seemingly, in order to estimate both of the reduced-order models M, and M, it
would suffice that u, is persistently exciting of order max (1, n, + ng). As we shall
see, this is definitely not true.

A Decentralized Least Squares (DLS) Estimator

We now make the additional assumption that v, is white noise. The reduced-
order model M is rewritten as

w,=‘P‘Tﬂ+B(q_l)u,+v‘ (11)
where
B = (row [414; ... 4,,)" (12)
¥, 0
¥, = N =1Q®y, (13)
0
Ve=[—wWy s =Wy 1" (14)

Here row M denotes the row vector containing the rows of the matrix M in order,
whereas ® denotes the Kronecker matrix product, see Vetter (1970, 1973). The ordi-
nary least squares estimate § of f now takes the form

N -1 N
B= [(IIN) );1 ¥, ‘PT] [(IINJ ; Wiw, — B(q_‘)v.)] (15)

In a similar fashion we can rewrite the reduced-order model M, as
7, = @70 + v, (16)
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where
6 = (row [A2A2 ... A BB, ... B, (17
¢ 0
o= - |[=I®e¢ (18)
0 o
P = [_z;r-l$ ety —z;r—nz! ulT—l! "'Su;r—n']T (19)
The ordinary least squares estimate 8 of @ takes the form
N —1 N
b= [(UN) ) ‘I’:‘I';'] [(UN) Zl ‘I’zzx] (20)
=1 =

Note that the two estimators given by (11)(15) and (16)+20) respectively do not
have to use the same sampling rate. As a matter of fact, it may be advantageous to
let them use different sampling rates. Transformation from a fast sampling rate to a
slower one does not cause any difficulties although the term B(gq ™ ')u, appearing in
(15) will only have a symbolic meaning; it is simply a known term representing the
action of past and current inputs.

Both of the two estimators given above require that the output y, is filtered with
the other reduced-order model’s A-polynomial, ie., 4,(g"") and A,(g"") respec-
tively. Since neither of these polynomials generally are known beforehand, we will
have to use the pertinent estimated A-polynomial instead, i.., 4,(g”", f) and
A,(g™*, 0) respectively. With this in mind, we now propose the following bootstrap
estimator.

Bootstrap algorithm (DLS Estimator)
1. Start with f° and k:=0.
2. Compute z(f*) from

Z,(ﬂ") =A,lg” !, ﬂ")y; 21
and 8**! from
N -1 N
o = [wm ) 0,(5*)03(3‘)] [(I/N) z d».(ﬁ*)z,(ﬁ*)] @)

3. Compute w/(@***) from
wif*1) = Ay(g™*, 8 )y, (23

and f*** from
N -1
prt = [(UN) ; "Pf(ék“)‘l’;r(é“l)]

<|am £ v ey - ma oo e

4. If k = 0 then k:=1 and return to 2,
else if 1 5 B* or B**' # 0" then k:=k + 1 and return to 2,
else halt.
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The most crucial questions about the above bootstrap estimator are: (1) does it
ever converge; and (2) if so, under what conditions does it converge. The con-
vergence properties of this algorithm are the topic of the next section. To close this
section we shall take a look at a couple of other estimators.

Decentralized Instrumental Variable (DIV') Estimators

If the process {v,} is coloured, we have to employ other methods for the design
of our decentralized estimator. We shall now consider a couple of IV variants (for
more details about IV methods, see Séderstrom and Stoica, 1983).

DIV I Estimator

From the form of the DLS estimator we can directly derive the following IV
variant

N -1 N
B= [{UN) ):1 ?, ‘P}'] [(IIN) )_:l P (w, — Blg~ ‘)u.)] (29)
o= [(I/N) s 3, m?]_l[(l/m 5 3, z.] (26)
=1 =1
where
¥ 0
¥=| . |=10% 27
0 ¥,
';t=[_ﬁ";r—1’---’ _i’hv‘llt—m 4 (28)
W, = Ay Y@ ")Blg™ ")y, (29)
@ 0
&= . |=1®%, (30)
0 &
Pe=[—Z 1y ey —Frpps Ui—15eevs Up—ppl" (31)
z, = A; (g ")Blg ', (32)

¥, and D, are the same as previously.

DIV 2 Estimator

This IV variant needs a little more explanation. Assume that A,(g ) and B(g~ ")
commute (generally this only applies to SISO and MISO systems). We now rewrite
(1) as

Ay(g My, = Bla i, + A3 (g M, (33)
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where
i, = A3 (g Y, (39
From (33) we can derive the IV variant
N -1 N
p= [(UN) ; ¥, ‘P:T] [(l/N) ;1 P — B(q_‘)ﬁ,)] (35)
where
Y. =1®y; ¥.=10Y, (36)
'xbl = [—)’;r— | R "ytT—ln]T (37)
J’ = [_j:’?—ls vesy _j’;r—m]-r (38)
=4y l(q_ l)ﬂq-l)ﬁl (39)

In a similar fashion, assuming that A,(g"!) and B(g~!) commute, (1) can be
rewritten as

Ayl "y, = Blg™ iy + Ay g o, (40)

where
i = Ay g™ ", (41)

From (40) we derive the IV variant

0=am S a0r| {am 3 o] @)

where
O,=I1Q¢; B,=1®¢ (43)
R o VEPTRTINES P T 449
el R VTN PR - 45
Yo = A3 '(q”")B@" M4, (46)

Note that {,, ¢,, ¥,, and &, are all different from what they were in the DLS and
DIV1 estimators. Also note that by the above assumptions,

Yo=3:=[41a7 ") Axg™ )17 'Blg™ "), = A" (g~ )Blg™ "y, 47

These equations show that this estimator essentially is based upon filtering the input
u, rather than the output y,.

The bootstrap IV variants are similar to that given for the DLS estimator, but
we have to start with f° and 8° rather than only f° (since %, now depends on 6*, see
(32) whereas z, depends on f¥).

4. Convergence analysis of the bootstrap estimators
In addition to the assumptions made in the previous sections we now also

assume that processes {u,} and {v,} are stationary and ergodic with respect to
second order moments.




Convergence analysis of decentralized parameter estimators 19

4.1. Analysis of the DLS Estimator
From the assumptions above, as N — oo the DLS estimator takes the form
Pt = [ER B YPTO )] WG HIw@ ) — Blg !, 8 ] (4®)
<+t = [EQ(AHT (9] EQLB2/(BY (49)

where E is the expectation operator.

Let (B*, 6*) denote the true value of (B, 6). Note that if the consistency condi-
tions in § 3 are satisfied, then (B*, 6*) is indeed a convergence point. From (48) and
(49) we obtain

EW(6%)[w(6%) — Blg™", 0*)u, — [ (6%)p*]1 =0 (50)
EQ(B*)[z{f*) — ®{(F*)6*]1 =0 (51
By linearizing (48)-(49) about (f8*, 8*) we find after some calculations
Bt — p* = F(0*)[0**" — 6*] (52)
41 — 6% = F (M - B%], (33)
that is,
Bt — B* = Fy(0")Fa(F*)E* — B*] (59)
or
Ok+t — 0% = Fo(B*)F (6" — 6*] (55)
where

F("=M _'(9*7{5 6%'1, () ® (wi6*) — Blg ", 6*)u, — ¥r(6%)B*)]

G E G-Iy

x (I @u)— —a% O* ® ﬁ*)]} (56)

Fo(p") = ‘(B*){ )
+ mm*\[ e (B - TF EN® 9*)]} (57)
M(O%) = E¥0%¥10") (59
L(B¥) = EOBMSI(BY), (59

see also Vetter (1970, 1973).
The DLS estimator converges locally if and only if the matrix
F(B*, 6*) = F(6")F () (60)

(or F'(*, 0%) = F,(B*)F(6*)) has all of its eigenvalues strictly inside the unit circle.
Note that the matrices F(f*, 6*) and F'(p*, 6*) have exactly the same nonzero eigen-
values. We shall use the matrix F{f*, 6*) in the remainder.
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The above expressions for F,(6*) and F,(f*) are quite general. By using the fact
that u, and v, are independent and that ¢, is white, we find after some further calcu-
lations

Fy(0%) = —[EY{0*)¥](6"] ' E¥(6")D](5*) (61
Fy(p*) = —[EQ(B*)D(B*)] ' EQLB*)¥](6%) (62)
where
DY) =1® @/B*); PL0*) =I®y(0%) (63)
PGB =[=Z 1y s = s s omv s U py]” (64)
Ud0®) =[— Wy, vy =W, I (65)
Z,=Alq ", Py W= Alg ', My, (66)

We have taken the effort of carrying this out for a somewhat general multi-
variable case just to see how far the analysis can be extended. It turns out that some
very neat and useful results can be obtained if we assume A(g™") = A,(g” ")4,(¢™")
to be symmetric. This assumption further underscores what was stated in § 1, i.e., the
analysis herein is in most cases restricted to SISO, MISO, and diagonal form
MIMO systems.

Consequently, let us assume A(g~!) to be symmetric (in the sense that matrices

Ay, ..., A, are all symmetric). Without much loss of generality we can now assume
the system to be SISO. (61) and (62) thus take the form
Fy= —[EY¥7] 'EY, 0 67)
F, = —[E@,¢/1 'Epf (68)
whereas (60) takes the form
F = [EY, ¥y 1 "EY, o [E@, ;1 'EQ, ¥} (69)

For the sake of simplicity we have now dropped all arguments of ¥, and ¢,.
The expression for F given in (69) turns out to be very useful in the following.
We note that (4, h) is an eigenvalue/eigenvector-pair of F if and only if

(AE% 'ﬁ;r - wa (o;r[E‘pt ‘P;r] - lE(ot ‘b;r)h =0 (70)
Theorem I
If 1is an eigenvalue of F, then Aisrealand 0 € 1 < L.
Proof. See the Appendix. O

At this point we know that no eigenvalues are outside the unit circle, which is
necessary for local convergence. Furthermore, since the eigenvalues are real and
positive, the convergence will, provided the algorithm does converge, be smooth, ie.,
without any oscillations. The following lemma gives a characterization of the multi-
plicity of the eigenvalue 4 = 1.

Lemma I
A = 1 is an eigenvalue of F of multiplicity p (both algebraic and geometric) if and
only if u = O is an eigenvalue of

E r ;r E T
e o
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of multiplicity p.
Proof. See the Appendix. O
The previous lemma is helpful because it allows us to determine the multiplicity

of the eigenvalue 4 = 1 simply by finding the rank of the matrix (71). In order to
continue this line of approach, consider the three polynomials

CE)=co+ciz+...+¢, 2" (72)
Diz)=dy+dyz+...+d,z" (73)
Ez)=ey+e z+...+ ¢z (74)

With C(z), D(z), and E(z) we associate the matrix (missing entries are all equal to
Zero)

So Sron gotides e G
(fq__ '51 AP OLPIY fm_, n rows
o oy Emrt
Ho By aer
T(C,D,E)= | PSR- P +1 m rows (75)
Ho My st
Vo Vi I T e T
Vo Vr- SRvRENR———— | rows
| Vo vy : ".vn-l-m_
where
E2) = D2ER) = o + E12 + oo + Emar 2™ (76)
M(2) = C(2)E(z) = po + 2 + ... + Hosrz"t! )
N@)=C@D@E)=vo+viz+ ...+ Vv, 2" " (78)

Matrix T(C, D, E) resembles a Sylvester matrix, see Jury (1974), Anderson and Jury
(1976), Kailath (1980), and Soderstrom and Stocia (1983), and it can in fact be con-
sidered to be a kind of generalization. For example, if we choose E(z) = 1, then T(C,
D, E) = S(D, C) where S(D, C) is an (n + m) x (n + m) Sylvester matrix.

Lemma 2
Assume E(z) and N(z) = ((z)D(z) to be coprime. Then

rank T(C, D, Ey=n+m+1—k (719)
if and only if C(z) and D(z) have exactly k common zeros.

Proof. See the Appendix. O

Use of the two lemmas is very helpful in proving the next theorem.
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Theorem 2

Assume the input u, is persistently exciting of order n, + n, + ng. Then A=1is
an eigenvalue of multiplicity p if and only if 4,(g”") and A,(¢g~"') have exactly p
common zeros.

Proof. See the Appendix. O

Corollary 1
The bootstrap DLS estimator converges locally if and only if 4,(g~") and
A,(g™*) are coprime.

The results given by Theorem 1 and Theorem 2 are quite neat, since it is fairly
easy to find when the bootstrap algorithm will fail. Multiple poles of the system
must either belong solely to model M, or to model M, and may not be shared in
any way.

Before we proceed with a couple of examples, we shall take a look at the two
DIV estimators. In lieu of our previous comments we will now carry out the
analysis only for SISO systems.

4.2. Analysis of the DIV I Estimator
As N — oo the equations for the bootstrap DIV1 estimator take the form

Bt = [EG B, OWTEN EG LB, 09w,0") — Blg™ !, Bu,] (80)

6+ = [E@(){ (B ' E@L024 ") (81)
By linearizing (80) and (81) about (f*, 6*) we obtain after calculations

Bt — B* = Fyy(B* 6" — B*1 + Fa(B*, 6*)[6" — 6*] (82)

Gt — 6% = Fyu(B* 696" — 61 + Fo(p* 6B " — p*] (83)

where

Fua(p*, 6% = ¥, e*){ o 6 0°
x [wd0% — Bl ™", 6%, — .T(e*)ﬁ*]} (84)
Fia(B%, 0%) = K", e*){ & (e, 0w — Bla™, 0%, — ¥EE)P")

+ Ep(p, 9*{% (@)~ Sprta 0, — pr 9*)]} (85)

Fy(B*, 6% =L Y(B, 9*){ T (6")[z(B%) - (ﬁ*)ﬂ*]} (86)
Fa5(B*, 6%) = L7 Y(B*, 9‘){5(0&9*][ (p*) —6*T %(ﬂ*)]} 87)

and where
M(B*, 6%) = EJ{B*, 0*)y;(6%) (88)

L(p*, 6%) = Ep(6)0;(B*) (89
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Substituting from (82) into (83) we obtain (all arguments are now dropped for
the sake of simplicity)

G+t — 0% = Fy, Fy [ B* — B¥1 + (Fyy + Fy Fy)[6F — 60%] (90)

which together with (82) shows that the bootstrap estimator converges locally, pro-
vided the matrix

Fll FIZ ]
91
[FzzFll Fy1 + Fy Fyy G

has all of its eigenvalues inside the unit circle.
From further calculations we find

Fy,=0; Fp =0 (92)

so that the nonzero eigenvalues of the matrix (91) can be determined from F,, F,,
or, eqgivalently, from F,, F,,. We choose to use the latter in the sequel. Proceeding
even further, we end up with

ﬁ(ﬁ*, 9*) = E':’;t 'I’;r = E'pt'};;r
Z(ﬂ*s 0*) = Ep, ‘;O:T = Ep, '?’rT

whereas
Fip = —[EY 1 EY, &f 93)
Fa2 = —[Ep 91 'EQ 7 (94)
and the algorithm converges locally if and only if the matrix
F = Fy;, Fyy = [EJ, Y71 EY, OTEG, &7 'E, 7 95)

has all of its eigenvalues inside the unit circle.
Further analysis gives identical results to those obtained for the DSL estimator.
We summarize the properties of the DIV1 estimator in what follows.

Theorem 3

If 1 is an eigenvalue of F, then A is real and 0 < 1 < 1. Moreover, if , is persist-
ently exciting of order n, + n, + ng, then A = 1 is an eigenvalue of F of multiplicity
pifand only if 4,(g ") and A,(g~") have exactly p common zeros.

Proof. Omitted, but it is very similar to the proof for the DLS estimator in the
Appendix. O

Coroliary 2
The bootstrap DIV! estimator converges locally if and only if A,(¢”") and
A,(q~") are coprime.

4.3. Analysis of the DIV 2 Estimator
As N — oo the equations for the bootstrap DIV2 estimator take the form

P+t = [EQ LY, i1 LEG B, My, — Blg™ !, 89u(6)] (96)
61 = [EpLf**?, 0] (B )] 'Ep B, 89y, 97)
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Linearizing (96) and (97) about (*, 6*) yields two equations of the form given by
(82)(83), but where the matrices F,,, Fy,, F;,and F,, now take the form

Fuu(p*, 0%) = ¥71(p, e*){ gg; (8%, 0

x [y, — Bl@™*, 0*)ia6*) — wfﬁ*]} 98)
Fa(B*, 6%) = F1-1(p*, 9*»{ oot (8% 0%)
x [y, — B(g ™", 0%)i(6%) — W B*1 — EG(B*, 6%)
o,
[am (", 6%)(6®) + Blg ", 6%) —3%(9*)]} 99)
3,
a0t

Fyu(B*, 6%) = L '(p*, 9"‘){5 (B* 6*)Ly: — ﬂof(ﬂ*)ﬂ*)]} (100)

0,
Faa(f*, 6%) = L (%, 9*){5 % (B* 6)y: — oi(p*)6*]

— Ep(p*, 0%0% %‘ (ﬁ*)} (101)

where
FI(B*, 0%) = EJ,(*, 6% (102)
L(B%, 0%) = Ep(B*, 607(5) (103)

From the above equations it follows that the DIV2 bootstrap estimator con-
verges locally provided the matrix given by (91) (but now with the new matrices F,,
F,;, F3;, and F,, defined by (98)(101)) has all of its eigenvalues strictly inside the
unit circle.

Further calculations reveal that also in this case

Fi;=0; F; =0
ﬂ(ﬁ*s 9*)= EJ’I'I’T= E';: J,;l‘
I:{ﬁ*s 9*)= E‘;Bt ‘;"T: E&:&’;r

whereas
-1
Fia = ~[B097) B, - 55 o1 (104)
Axq )
- ~ ~T1—1~ Z(q ) T
Fy, = —[Ep,$71 'E, 2.4 v (105)

The nonzero eigenvalues of the matrix (91) can therefore also in this case be deter-
mined from the matrix

1 A@Y) repe oo Ag ) -
F=Fyy Fo = IEG 0T B, 270 5 @ITEG 901 B 2= (106)
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Contrary to what was found for the DLS and the DIV1 estimators, analysis of
(106) does not lead to any easy-to-check criterion which allows us to determine the
local convergence of the DIV2 estimator, although it can be asserted that 4 = 1 will
be an eigenvalue of F if A,(q™") and A,(q ') are not coprime. However, each
system has to be investigated separately, and local convergence will generally
depend upon the true values of § and 6 as revealed by the analysis of a second-order
system (sec the next section). Even when 4,(¢"!) and A,(¢q™!) are comprime, the
eigenvalues of F are not confined to the interval [0, 1] but may actually be outside
the unit disc. Furthermore, analysis of a second-order system reveals that when
local convergence is ensured, the convergence rate will be quite poor. This estimator
should therefore generally be avoided, since the DIV1 estimator turns out to have
superior convergence properties.

5. Some examples

In this section we shall take a look at a few simple examples which will provide
us with further insight into the convergence properties of the three decentralized
estimators.

Example 1 (Second-Order System)
Consider a simple second-order system of the form

(1 + B*q "Nt + 6*q" Yy, =u, + v, (107)

where | f*| < 1, |6*| < 1. Since the polynomial B(g ') in this case is known, what
we assume about the input becomes almost immaterial; u, may be white noise,
deterministic, or even correlated with v,.

DLS Estimator

For the DLS estimator to work properly we must assume v, to be white noise.
Using (69) we find after some calculations

_(1=p - 6+
Ca-pey?

(108)
Since

(1= B*0%7 — (1 — p*3)1 — 6*%) = (B* — 0*)* > 0,
it indeed follows that 0 < F < 1 and that F = 1 if and only if §* = 6*. Moreover, if
|f*| ~ 1-0 or |8*| = 1-0 (but not both), then F = 0 which means that the con-

vergence will be very fast, in fact perhaps so fast that only one or two iterations
could be necessary.

DIV I Estimator
The input v, may in this case be coloured. For the sake of simplicity wu, is
assumed to be white noise. Using (95) we find after some calculations
p_ (=B — 6%
(1 = pro%)y?

(109)




26 R. Henriksen

which is identical to that found for the DLS estimator. All the above results and
comments therefore also apply to this estimator.

DIV 2 Estimator
With the same assumptions as above we now obtain using (106)

P L U Br0%)2 — 6%(1 — B*2P1LB*(1 — 6*%)2 — 6*(1 — B*6*)*]
[B*(1 — 6%%) — 6*(1 — p*¥)]1%(1 — p*6*)’
Careful analysis of (110) reveals what follows. First, F = 1 if §* = 6*, which is the
same as for the two other estimators. Second, 0 < F < 1 if and only if p* and 6*
have identical signs, ie., sgn f* = sgn 6%, whereas F' > 1 if sgn p* # sgn 6*. More-
over, if |6*%| ~ 0 then F = 1 regardless of the value of §*, i.e., there is very slow
convergence even when the system is extremely stiff, the opposite of that found for
the other two estimators. Finally, assume for example that f* ~ —1-0 (but still
inside the unit circle). (110) then takes the approximate form
6*
F=1+ 1—o7

which means that 0-75 < F < 1-0 whenever the estimator is stable, i.e., whenever
—1-0 < 0* < 0. The latter reveals that convergence of this estimator will in any case
be rather slow.

This example shows that compared to the other two estimators, the DIV2 esti-
mator has significantly more restricted convergence properties, and the convergence
rate will in any case be quite poor. The DIV2 estimator should therefore generally
be avoided, since the DIV1 estimator obviously has superior convergence proper-
ties. a

(110)

Example 2 (Third-Order System)
Consider the system

(14 B*q 1+ 0tq” )1 + 65 Yy =u + 1, (111)

where |f*| < 1, |6%| <1, and |0%| < 1. Since B(g ') is also known in this case,
what we assume about the input u, is somewhat immaterial.

DLS Estimator
Assuming v, to be white noise, we obtain using (69)
_ (1= B**1 — 0F6D(1 + B**X1 + 616%) — 2B%(67 + 63)]
B (1 — B*6T)*(1 — p*6%)°
From (112) it can be confirmed that F =1 if and only if * = 0F or p* = 0%,

whereas 0 < F <1 provided p* # 6f and p* # 0%. Moreover, if |f*|~ 10 or
|676%| = 1-0 (but not both), then F =~ 1 which means very fast convergence. This

F

(112)
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Figure 1. Estimates of the A-polynomial. (a) IV estimator; (b) DIV1 estimator.

confirms what was found in the first example, i.e., if the system is stiff, then the DLS
estimator converges very rapidly.

Finally, assume 8% < g* < 6%. Choosing for example * = —0-5 we now find
F = 0-75 where the lower limit is reached by letting 6 - —1-0 and 0% — 0. This
shows that the estimator can be quite sensitive to the choice of initial values of f
and . Zeros of A(g ') believed to be relatively close in order of magnitude should
be put in the same factor of A(g?), i, either in A,(g ') of in A,(g*). If in the
latter case we had let A,(¢g”"!) =1+ 0,4 " (rather than A, (g ") =1+ B¢ "), a
much better convergence rate would have been obtained.

From the above comments it is apparent that some information about the plant
is not only helpful but in most cases also necessary for the estimator to work prop-
erly. Badly selected initial values or improper factoring of A(g ') will in many cases
cause the estimator to fail or to exhibit very slow convergence.
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DIV 1 Estimator

For the sake of simplicity, u, is again, as in Example 1, assumed to be white
noise. Using (95) we find after some calculations

P U Br2)1 — 61691 + p**X1 + 6163) — 25*(01 + 63)]
(1 — B*61)*(1 — p*67)*

which is identical to what was found for the DLS estimator. All the above results
and comments therefore also apply to this estimator. O

(113)

Example 3 (A simulation experiment)
Consider a moderately stiff system with transfer function G(s) =1/
(1 4+ 0-2sX1 + 5s), which with a sampling period of T = 0-1 takes the form

(1 — 0:98¢ 1)1 — 061~ ")y, = (00042~ * + 0-0036¢ %)y, +v,  (114)

{u,} and {v,} are assumed to be mutually independent white processes. In the noise-
free case (v, = 0) an ordinary DLS estimator will perform somewhat better than the
DIV1 estimator, but this is radically changed even with small disturbances. Results
from a simulation experiment with a signal-to-noise ratio equal to 25 are shown in
Fig. 1. Initial values for the estimators where chosen to be af = 0-95, a3 = 0-4, B =
0-02, and b9 = 0-01. The value of a, was for the DIV1 estimator kept constant
during a commissioning period of 150 samples.

As seen from Figs. 1(a)-1(b) and 2(a)-2(b), the ordinary IV estimator is com-
pletely unable to track the four parameters (the estimates of a, and a, are put equal
to zero whenever they become complex). On the other hand, the DIV1 estimator
tracks the four parameters reasonably well.

Similar results are reported in a comparison between an ordinary LS estimator
and the DLS estimator in the paper by Young et al. (1987).

6. Conclusion

We have considered the problem of estimating an ill-natured, e.g., stiff, system by
employing a certain decentralized estimation technique where each sub-estimator
uses filtered input-output data to estimate a reduced form of the model. The decen-
tralized estimator can be designed using LS or IV methods. We have also analysed
the convergence properties of some different bootstrap estimators. As expected, not
all of the estimators turned out to have good convergence properties. With a couple
of estimators we have succeeded in finding necessary and sufficient conditions for
local convergence. Some simple examples show that the estimators can exhibit very
rapid convergence when the system is stiff.

The simulation experiment reported in this paper reveals that the robustness of
the estimator can be significantly improved by employing a decentralized estimation
scheme as presented. Furthermore, since the decentralized algorithms reduce the full
estimation problem to two or more parallel estimators of smaller dimension, the
computational load and memory requirements can be reduced.

It is believed that the inclusion of a priori knowledge of the plant is helpful and
in many cases necessary in order to enable a decentralized estimator to work prop-
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Figure 2. Estimates of the B-polynomial. (a) IV estimator; (b) DIV1 estimator.

erly. The examples fully demonstrate that improper factoring of A(g ') can lead to
very poor convergence properties.

We have not considered the case of factoring the polynomial B(g ') in addition
to factoring A(q~ "), e.g., we can rewrite the model as

Ayg Axa )y, = Bya M)Bag Y, + v, (115)
Defining
w, =A@ y; ro=Byg "u, (116)
(110) takes the form
Ai(g w, = By~ + v, (117)

which can be used for estimating A,(g ') and B,(g~'). Note that we here have to
filter both the output y, and the input 1,. The polynomials A,(q ') and B,(g~') can
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be estimated in a similar manner. This estimation scheme requires that also the
polynomials B,(q~!) and B,(g~ ') must be coprime.

An important topic which has not been examined in this paper is the accuracy of
the decentralized estimators. This will be an important topic for future research, and
it is hoped that some results for this can be presented in the near future.

REFERENCES

ANDERsON, B. D. O., and Jury, E. I. (1976). Generalized Bezoutian and Sylvester matrices in
multivariable linear control. IEEE Trans. on Automatic Control, 21, 551-556.

CLARy, J. P. and FrankuLin, G. F. (1984). Self-turning control with a priori plant knowledge.
Proc. 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada, pp. 369-374.

HenrIkSEN, R. (1988). Convergence analysis of some decentralized parameter estimators.
Proc. 8th IFAC/IFORS Symposium on Identification and System Parameter Estimation,
Beijing, China, pp. 447-452.

Jury, E. I. (1974). Inners and Stability of Dynamic Systems. (John Wiley & Sons.) New York.

KALATH, T. (1980). Linear Systems (Prentice-Hall) Englewood Cliffs, N.J.

SODERSTROM, T. and Stoica, P. G. (1983). Instrumental Variable Methods for System Identifi-
cation (Springer-Verlag).

Stoica, P. G. and SGpErSTROM, T. (1981). Asymptotic behaviour of some beotstrap estima-
tors. International Journal of Control, 33, 433-454.

VETTER, W. J. (1970). Derivative operations on matrices. IEEE Trans. on Automatic Control,
15, 241-244.

VETTER, W. J. (1973). Matrix calculus operations and Taylor expansions. SIAM Review, 18,
352-369.

Young, E. E., Henriksen, R. and MeLLicHAMP, D. A. (1987). A multi-rate decentralized
parameter estimation method for stiff systems. Proc. 26th IEEE Conference on Decision
and Control, Los Angeles, California, pp. 1902-1907.

Appendix
Proof of Theorem 1
Let (4, h) satisfy (70), i.e.,
JEY Yih = EY, of[E@, 01 'E@ Y (A1)

Multiplying both sides of (A1) by h* (h* denotes the adjoint, ie., transpose and
complex conjugate of h) we obtain

AR*EY,YTh = h*EY, 0{[E@,@{1 'E@, ¥ h (A2)

Since the matrices Ey,yF and Ey, ¢ [E@,¢;]1 'Ep,y; are positive and non-
negative respectively, the term h*Ey,yJh must be real and positive, whereas
K*Ey, oT[E, ¢T1 *E¢,¥Th must be real and non-negative. This implies that A
must be real and 4 > 0. Furthermore, h must be real, i.e., h* = h™ because 4 is real.

Now, since
w,] S =[Ew,w? Ey, <p,‘] A
E[qo. [Vio:] Ep, ¥y Eo, ¢! >0 (A3

Ey, ¥ = EY, ¢/[Ep, 01" "E@, ¥/, (Ad)

it follows that
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ie.,
W EY,Yih > h'EY, o[ [Ep, ;1 'Ep,Y[h (A5)
which together with (A2) shows that 1 < 1.

Proof of Lemma 1
Note that (1, h) is an eigenvalue/eigenvector-pair of F if and only if

(EY, V! — EY, 0/ [Ep,¢{]1 'E@,¥;1h =0 (A6)

First, assume that u =0 is an eigenvalue of the matrix (71) of multiplicity p.

Since this matrix is symmetric, multiplicity p means both algebraic and geometric
multiplicity p. Let the vector g* = (g}, g3) # O satisfy

Ey,y{ Ey, qof][gl]
=0 A

[E‘P.\bf Eg, ¢! | g2 A7)
from which we obtain

92 = —L[Ee, ‘P;r] - IE‘P: '1’391
and

[EY, ':1";' - El". (OI[E(O, ‘P;r]_ lE‘pt 153]91 =0 (A8)

(A8) shows that (1, g,) must be an eigenvalue/eigenvector-pair of F. Furthermore,
there are exactly p distinct vectors g satisfying (A7), which shows that 1 = 1 must
have geometric multiplicity greater than or equal to p. In order to show that A = 1
cannot have algebraic (and hence geometric) multiplicity greater than p, we simply
note that if h is a vector satisfying (A6), then (0, h) must be an eigenvalue/
eigenvector-pair of the symmetric matrix

EY, ¥ — EY, ¢/ [Ep, 91 'E@, ¥/

Therefore, if 2 =1 is an eigenvalue of F of algebraic multiplicity greater than p, it
would also have to be of geometric multiplicity greater than p. This would, however,
imply that 4 =0 must be an eigenvalue of the matrix (71) of multiplicity greater
than p, contradicting the fact that u = 0 is an eigenvalue of multiplicity p.

Second, assume 4 = 1 is an eigenvalue of F of algebraic multiplicity p. From the
above arguments it now follows easily that 4 = 1 also has geometric multiplicity p
and that u = 0 must be an eigenvalue of the matrix (71) of multiplicity p.

Proof of Lemma 2
Consider the equation
x"T(C,D,E)=0 (A9)
where

~ -

xT=[Eo, e s Cpqs J’O"“’dm—l’é‘h . ,e'_l]
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Define the polynomials
C@D=co+Cz+...4 Gy 2" !
DR)=dy+diz+...+d,_,z" '
Ep)=2 +&z+...+& ,27"
This allows us to write (A9) as

CRDEE(R) + DHCERER + E)C2)D(E) = 0 (A10)
Assume C(z) and D(z) to have exactly k common zeros. Then we can write
Cz) = Co(2)L(2); D(z) = Do(2)L(z) (A11)

where deg L(z) = k and where Cy(z) and Dy(z) are coprime. Substituting this into
(A10), it takes the form

B@DYDE(R) + DRCHDER) + EDCD(2)L(z) = 0 (A12)

Since C(2), Dy(z), and E(z) all are mutually coprime, it follows that Cy(z) must be a
divisor of €(z), and D(z) must be a divisor of D(z), viz.

C(2) = Q(ICo(d);  Diz) = REZDo(2) (A13)
where deg Q(z) = deg R(z) = k — 1. Substituting (A13) into (A12) we obtain
Q(2)E(z) + R(2)E(z) + E(z)L(z) = 0 (A14)

Since E(z) and L(z) are coprime (L(z) is a divisor of both C(z) and D(z), ie., of
C(z)D(z)), E(z) must be a divisor of E(z). However, deg E(z) = I, whereas deg E(z) = |
— 1, and the only possibility is E(z) = 0. (A14) thus becomes
Q@)+ R(z) =0 (A15)
where the polynomial
0D =qo+ qrz+ ...+ =, 2!
has k arbitrary coefficients, whereas R(z) = —Q(z). This shows that the nullspace of
T'(C, D, E) must have dimension k, viz.
dim MT'(C, D, E)) =k (A16)

which means that rank 7'(C, D, E) = rank T(C, D, E)y=n+ m + | — k.
Finally, assume that rank T(C, D, E)=n+ m + | — k. From the above argu-
ments it is now easily derived that C(z) and D(z) must have exactly k common zeros.

Proof of Theorem 2

We shall for the sake of simplicity assume v, = 0O for all . The theorem is still
genericallyt true for v, # 0.

First, assume that 4,(g~ ") and A,(g ') have exactly p common zeros. Also, note
that it was initially assumed that A(g™') (= A,(¢g ")A2(g™ ")) and B(g~') are

t Generically true here means true for almost all signal to noise ratios, see also Séders-
trom and Stoica (1983).
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coprime. Now, observe that

— Bg")
TAgh

B
AlgH

Vo|_|_ B _
[ep.]“ Ag H) !

B Bg™")
Afg
Uy

ul—nn

— Aa(q”)Bl@ Yy T

- A?.(q- I)B(q - l)ut—m
1 Ay(g™")Blg™ Yu -y
Ay(g™ l)Az(‘fl_ l)
- Al(q_l)B(q_ l)ul—uz
Ay(g™YAxg -y

| Aa g Y]
LS |

i Y2
T(4,, A;, —B) A@ e | (A17)

ul_ﬂl'l!.'l-llll
where the matrix 7(4,, A,, — B) is given by (75)«78). We now obtain
!r"t] I:E!!’ \I’T EY, (P‘]
E T T — ¥t ¥ —
I:‘Pt idd Ep, ¥y Eg, ¢/
nAl’ Az, —B)P(AlAz, AlAz, u, ny —+ nz + nn, ny + "2 + HB)TT(AI, Az. _B}
(A18)
where
Uy
1 : i
Ca ) L] Dlg et el
see Soderstrom and Stoica (1983). If C(g~') and D(g ') are polynomials with all

zeros strictly inside the unit circle and if n > m, then rank P(C, D, u, n, m) = m if
either

P(C,D,u,n,m)=E (A19)
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(1) C(g")/D(g™") is a strictly positive real function and , is persistently exciting
of order m

or
(2) The process {u,} is an ARMA (n,, n,) process, i.e.,

Flg~ Y, = Glg™ "), (A20)
where deg F(g~ ) = n,, deg G(g~ ') = n,, and {g,} is a white process.

In our case we have 4,(q ")A,(g ") = Clg~ ') = D(g™ "), so it is obviously sufficient
that u, is persistently exciting of order n, + n, + ny for P(A4;, A1 A,, u,ny +n,
+ ng, n, + n, + ng) to have rank n; + n, + ny. By the assumption being made in
the theorem it thus follows that

E Ey, oF
rank [E(';"i’; Eg:f;?] =rank T(A,, Ay, —B)=n, + n, +ny —p (A21)
which means that the matrix (71) must have an eigenvalue u = 0 of multiplicity p.
From Lemma 1 it now follows that F has an eigenvalue 4 = 1 of multiplicity p.
Second, assume F to have an eigenvalue 4 = 1 of multiplicity p. By Lemma 1
i = 0 must be an eigenvalue of the matrix (71) of multiplicity p. From (A17}HA19) it
then follows that rank T(A4,, A,, —B)=n, + n, + ng —p, which by Lemma 2
implies that 4,(g~ ") and A4,(g ') must have exactly p common zeros.
It is of interest to observe that this theorem can be proved in a somewhat more
direct fashion using (69) and computing the power spectral density of [ ¢; 1". This
proof is, however, quite lengthy and laborious.




