“Observability analysis and bad date processing of state estimation using Hachtel's augmented matrix method”

Authors: Felix F. Wu, Wen-Hsiung E. Liu, Lars Holten, Anders Gjelsvik and Sverre Aam,
Affiliation: University of Berkeley, Statkraft and SINTEF
Reference: 1988, Vol 9, No 3, pp. 109-128.

Keywords: Electric power system, static state estimation, error covariance sparse matrices, least squares, numerical methods

Abstract: The triangular-factorization-based observability analysis and the normalized residual-based bad data processing are extended to state estimation using Hachtel´s augmented matrix method. This method is numerically robust, computationally efficient, and has a reasonable extra storage requirement. In this paper it is shown that the observability analysis can be carried out in the process of triangular factorization of the augmented coefficient matrix used in Hachtel´s method. Moreover, the normalized residuals are shown to be obtainable using the sparse inverse of this augmented matrix. The algorithms have been successfully incorporated in the state estimation program developed at Norwegian State Power Board (Statkraft). Test results on the IEEE 14 bus system and a 99-bus system consisting of the main grid of southern Norway are presented. Hachtel´s approach to state estimation provides an attractive alternative to the standard normal equations approach.

PDF PDF (1858 Kb)        DOI: 10.4173/mic.1988.3.1

[1] ASCHMONEIT, F.C., PETERSON, N.M., ADRIAN, E.C. (1977). State estimation with equality constraints, Tenth PICA Conference Proceedings, May 1977, Toronto, pp. 427-430.
[2] BJORCK, A. (1967). Iterative refinement of linear least square solutions, BIT,7, 257-278 doi:10.1007/BF01939321
[3] BROUSSOLLE, F. (1978). State estimation in power systems: detecting bad data through the sparse inverse matrix method, IEEE Trans. Power App. and Syst., 97, 678-682 doi:10.1109/TPAS.1978.354538
[4] CLEMENTS, K.A. DAVIS, P.W. (1985). Multiple bad data detectability and identitiability: a geometric approach, Proc. 1985 PICA Conference, San Francisco, May 6-10, 1985, pp. 461-466.
[5] CLEMENTS, K.A., KRUMPHOLZ, G.R., DAVIS, P.W. (1983). Power system state estimation with measurement deficiency: an observability measurement placement algorithm, IEEE Trans. Power App. and Syst., 102, 2012-2020 doi:10.1109/TPAS.1983.318187
[6] DUFF, I.S. REID, J.K. (1976). A comparison of some methods for the solution of sparse overdetermined systems of linear equations, J. Inst. Math. Appl., 17, 267-280 doi:10.1093/imamat/17.3.267
[7] DUFF, I.S. REID, J.K. (1983). Multifrontal solution of indefinite sparse symmetric linear systems, ACM Trans. on Mathematical Software, 9, No. 3., 302-325 doi:10.1145/356044.356047
[8] DUFF, I.S., REID, J.K., MUNKSGAARD, N., NIELSEN, H.B. (1979). Direct solution of sets of linear equations whose matrix is sparse, symmetric, and indefinite, J. Inst. Maths. Applies, 23, 1979, 235-250 doi:10.1093/imamat/23.2.235
[9] GJELSVIK, A., AAM, S., HOLTEN, L. (1985). Hachtel´s augmented matrix method - A rapid method improving numerical stability in power system static state estimation, IEEE Trans. Power App. and Syst., 104, 2987-2993 doi:10.1109/TPAS.1985.318939
[10] GOLUB, G.H. VAN LOAN, C.F. (1983). Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland.
[11] GU, J.W., CLEMENTS, K.A., KRUMPHOLZ, G.R., DAVIS, P.W. (1983). The solution of ill-conditioned power system state estimation problems via the method of Peters and Wilkinson, PICA Conference Proceedings, pp. 239-246, 1983.
[12] HANDSCHIN, E., SCHWEPPE, F.C., KOHLAS, J., FIECHTER, A. (1975). Bad data analysis for power systems state estimation, IEEE Trans. Power App. and Syst., 94, 329-337 doi:10.1109/T-PAS.1975.31858
[13] KRUMPHOLZ, G.R., CLEMENTS, K.A., DAVIS, P.W. (1980). Power system observability: a practical algorithm using network topology, IEEE Trans. Power App. and Syst., 99, 1534-1542 doi:10.1109/TPAS.1980.319578
[14] LIU, W.-H. E., WU, F. F., HOLTEN, L, GJELSVIK, A., AAM, S. (1987). Computational issues in the Hachtel´s augmented matrix method for power system state estimation, presented at the 1987 Power System Computation Conference, Cascais, Portugal, 30 August - 4 September 1987.
[15] MONTICELLI, A. GARCIA, A. (1983). Reliable bad data processing for real-time state estimation, IEEE Trans. Power App. and Syst., 102, 1126-1139 doi:10.1109/TPAS.1983.318053
[16] MONTICELLI, A., MURARI C.A.F., WU, F.F. (1985). A Hybrid State Estimator: Solving Normal Equations by Orthogonal Transformations, IEEE Trans, Power App. and Syst., 105, 3460-3468 doi:10.1109/TPAS.1985.318896
[17] MONTICELLI, A. WU, F.F. (1985). Network observability: theory, IEEE Trans. Power App. and Syst., 104, 1042-1048 doi:10.1109/TPAS.1985.323454
[18] MONTICELLI, A. WU, F.F. (1985). Network observability: identification of observable islands and measurement placement, IEEE Trans. Power App. and Syst., 104, 1035-1041 doi:10.1109/TPAS.1985.323453
[19] MONTICELLI, A. WU, F.F. (1986). Observability analysis for orthogonal transformation based state estimation, IEEE Trans. Power Syst., 1, 201-208 doi:10.1109/TPWRS.1986.4334870
[20] MONTICELLI, A., WU, F.F., YEN, M. (1986). Multiple bad data identification for state estimation by combinatorial optimization, IEEE Trans. Power Delivery, 1, 361-369 doi:10.1109/TPWRD.1986.4308016
[21] QUINTANA, V.H., SIMOES-COSTA, A., MANDEL, A. (1982). Power system observability using a direct graph-theoretic approach, IEEE Trans. Power App. and Sys:., 101, 617-626 doi:10.1109/TPAS.1982.317275
[22] SCHWEPPE, F.C. HANDSCHIN, E.J. (1974). Static state estimation in electric power systems, Proc. IEEE, 62, 972-983 doi:10.1109/PROC.1974.9549
[23] SIEGEL, I.H. (1965). Deferment of computation in the method of least squares, Math. Comp., 19, 329-331 doi:10.2307/2003361
[24] SIMOES-COSTA, A. QUINTANA, V.H. (1981). A robust numerical technique for power system state estimation, IEEE Trans. Power App. and Syst.,100, 691-698 doi:10.1109/TPAS.1981.316920
[25] SIMOES-COSTA, A. QUINTANA, V.H. (1981). An orthogonal row processing algorithm for power system sequential state estimation, IEEE Trans. Power App. and Syst., 100, 3791-3800 doi:10.1109/TPAS.1981.317022
[26] TINNEY, W.F., BRANDWAIN, V., CHAN, S.M. (1985). Sparse vector methods, IEEE Trans. Power App. and Syst., 104, 295-301 doi:10.1109/TPAS.1985.319043
[27] U.S. DEPARTMENI OF ENERGY, (1984). Contribution to power system state estimation and transient stability analysis, prepared by ESCA Corporation, DOE/ET/29362-1, February 1984.
[28] VAN CUTSEM, Th. (1985). Power system observability and related functions - derivation of appropriate strategies and algorithms, Int. Journal of Electric Power and Energy Systems, Vol. 7, pp. 175-187 doi:10.1016/0142-0615(85)90047-X
[29] WANG, J.W. QUINTANA, V.H. (1984). A decoupled orthogonal row processing algorithm for power state estimation, IEEE Trans. Power App. and Syst., 103, 2337-2344 doi:10.1109/TPAS.1984.318550
[30] WU, F.F., LIU, W.-H. E., LUN, S.-M. (1987). Observability analysis and bad data processing for state estimation with equality constraints, Paper No. 87WM103-5 presented at IEEE PES Winter Meeting, New Orleans LA, Feb. 1987.
[31] WU, F.F. MONTICELLI, A. (1986). Recent Progress in Real-Time Network Security Analysis, Proc. IFAC Symp. on Power Systems and Power Plant Control, August 12-15, 1986, Beijing, China, pp. 10-16.

  title={{Observability analysis and bad date processing of state estimation using Hachtel's augmented matrix method}},
  author={Wu, Felix F. and Liu, Wen-Hsiung E. and Holten, Lars and Gjelsvik, Anders and Aam, Sverre},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}