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The triangular-factorization-based observability analysis and the normalized-
residual-based bad data processing are extended to state estimation using
Hachtel’s augmented matrix method. This method is numerically robust, compu-
tationally efficient, and has a reasonable extra storage requirement. In this paper
it is shown that the observability analysis can be carried out in the process of
triangular factorization of the augmented coefficient matrix used in Hachtel’s
method. Moreover, the normalized residuals are shown to be obtainable using
the sparse inverse of this augmented matrix. The algorithms have been suc-
cessfully incorporated in the state estimation program developed at Norwegian
State Power Board (Statkraft). Test results on the IEEE 14 bus system and a
99-bus system consisting of the main grid of southern Norway are presented.
Hachtel's approach to state estimation provides an attractive alternative to the
standard normal equations approach.

1. Introduction

State estimation in a power system is formulated as a nonlinear weight least
square (WLS) problem. Traditionally this problem is solved iteratively by the
normal equations approach (Schweppe and Handschin 1974).

This approach is known to exhibit poor numerical stability when the system is
ill-conditioned (Golub and Van Loan 1983). In such cases, the nonlinear WLS
problem may take more iterations to converge, or fail to converge at all. In power
system state estimation, ill-conditioning does occur and the cause of ill-conditioning
may be artificial or innate. It is experienced that artificially assigning very large and
very small weights for different types of pseudo-measurements, for example, large
weights for zero-injections, usually causes a convergence problem (Aschmoneit,
Peterson and Adrian 1977). It is shown that the existence of a connection of long
and short transmission lines in the power system may lead to ill-conditioning
{Monticelli, Murari and Wu 1985). Alternative WLS solution algorithms exist in the
literature. The formulation of WLS with equality constraints has been used to
handle zero-injections (Aschmoneit, Peterson and Adrian 1977). Orthogonal trans-
formation methods have been suggested (Monticelli er al. 1985; Simoes-Costa and
Quintana 1981a, b; Gu, Clements, Krumpholz and Davis 1983; Wang and Quin-
tana 1984; U.S. Department of Energy 1984) to ease the ill-conditioning problem.
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Duff and Reid (1976) have conducted an extensive comparison of various means
of solving the sparse linear WLS problem. The comparison considers numerical
stability, preservation of sparsity, and computation time, based on numerical experi-
ments on 2 number of random, as well as some structured, matrices. Their conclu-
sion 1s that for equations with widely differing scales, the Peters—Wilkinson
algorithm is recommended, otherwise Hachtel’s algorithm is recommended. Gjels-
vik, Aam and Holten (1985) have applied Hachtel's method with equality con-
straints to power system state estimation. Since zero-injections are treated as
equality constraints, the remaining equations do not have widely differing scales.
Moreover, since the equality constraints are included in the formulation, they are
much easier to deal with. Gjelsvik, Aam and Holten have compared the per-
formance of the proposed approach with the normal equations approach and the
normal equations with equality constraints on a realistic 99-bus Norwegian power
system and confirmed that for power system application, the Hachtel’s method is
numerically more stable, computationally efficient, reasonable in extra storage
requirement, and simple to implement.

Estimating the state is only a part of the larger function of the state estimation
software. Other related functions include observability analysis, bad data processing,
and external network modeling (Wu and Monticelli 1986). Two approaches for
observability analysis have been proposed; graph-theory based (Krumpholz, Clem-
ents and Davis 1980; Clements, Krumpholz and Davis 1983; Quintana, Simoes-
Costa and Mandel 1982; VanCutsem 1985) and triangular-factorization-based
(Monticelli and Wu 1985a, b; Monticelli and Wu 1986). The triangular-
factorization-based observability analysis is derived for state estimation using the
normal equations approach. It uses the same subroutines already in the state esti-
mation and is simple and efficient. For bad data detection and identification, it is
generally agreed that the methods based on the normalized residuals (Handschin,
Schweppe, Kohlas and Fiechter 1975; Monticelli and Garcia 1983; Monticelli, Wu
and Yen 1986) are effective. The computational burden of calculating the normal-
ized residuals can be greatly reduced for state estimation using the normal equations
approach by the use of the sparse inverse of the gain matrix (Broussolle 1978).

In state estimation using Hachtel’s method with equality constraints, instead of
the gain matrix, another matrix equation is solved at each iteration. Since the gain
matrix is never formed here, the triangular-factorization-based observability analysis
and the procedure for calculating normalized residuals for bad data processing
derived for state estimation with normal equations are not directly applicable. In
this paper, however, we extend the factorization-based observability analysis and
the normalized-residual-based bad data processing to state estimation using
Hachtel’s method with equality constraints. Recently, the factorization-based obser-
vability analysis and normalized-residual-based bad data processing have been
extended to state estimation using normal equations with equality constraints (Wu,
Liu, and Lun 1987).

The application of Hachtel’s method to state estimation is reviewed in § 2. The
algorithm for observability analysis is discussed in § 3. The procedure for calculating
the normalized residuals using the sparse inverse technique is discussed in § 4. The
derivations of the results used in §§3 and 4 are included in the Appendices. Test
results on the IEEE 14-bus system and the Norwegian 99-bus system are presented
in §5. The conclusion is presented in § 6. We have called the augmented matrix
approach Hachtel’s method following Duff and Reid (1976). Using the augmented
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matrix for solving the WLS problem has been previously proposed by many
researchers, including Siegel (1965) and Bjorck (1967). Since the use of the aug-
mented matrix for the direct solution of the linear WLS problem for the sparse case
was suggested to Duff and Reid (1976) by Hachtel, they have called it Hachtel’s
method.

2. Hachtel’s method

The equations relating the telemetered measurements and the state variables in
power systems are

z=h(x)+ w (§))

where z is the (m x 1) measurement vector, h(-) is the (m x 1) vector of nonlinear
functions, x is the (n x 1) true state vector, w is the (m x 1) measurement error
vector and m is the number of measurements.

The equality constraints of the zero injections are expressed by a set of nonlinear
equations

ox)=0 @

where ¢() is the (r x 1) vector of nonlinear functions. These zero injection con-
straints are to be satisfied.

The problem is to find an estimate of the state vector & which minimizes the
weighted least square J(x) = [z — h(x)]"W[z — h(x)] while the equality constraints
¢(x) = 0 are satisfied, i.e.,

min J(x) = [z — h(x)]"W[z — h(x)]

subject to
ox)=0 3)

where W is a diagonal matrix whose ith element W, is the weight for the ith mea-
surement and is equal to the reciprocal of the variance of the ith measurement error.

The nonlinear WLS problem (3) may be solved for % by an iterative procedure,
at each iteration the linearized problem of (3) is solved. Hachtel’s method with
equality constraints has been proposed to solve the linearized WLS problem, in
which the following equations are solved:

0 0 C|l| —a 2 Ac

0 oW ! HI|l o 'Wr|[=]|Az @
cCT HT 0 Ax 0
where
ch dc
H.—E(x) and C.=5x-(x)
are the Jacobian matrices, Az: = z — h(x), Ac: = —¢(x), Ar = Az — HAX and x = x*

at the kth iteration, X is the Lagrange multiplier, and o is a parameter to control the
numerical stability of the problem (Gjelsvik et al. 1985) that has been set to one in
the tests. The ‘optimal’ selection of o to enhance stability is discussed in (Liu et al.
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1987). It should also be pointed out that the weighting factors can be applied to H
and z first as is done in (Gjelsvik et al. 1985).
We shall use K(x) to denote the augmented coefficient matrix in (4), i.e.,

0 0 C
Kx):=| 0 aW ! H (5)
cC" H" 0

Obviously a decoupled (P and Q) version of Hachtel’'s method can easily be
derived using the decoupled C and H.

Hp O C. 0
B S K ©
The K(x) will be decoupled into

Kex) 0 ] 7

K(")"[ 0 Kyx)

where Kg(x) and K(x) have the same form as in Eqn. (4).

Note that the coefficient matrix K(x) is sparse, symmetric, but indefinite. An
ordinary sparsity-oriented pivoting scheme for symmetric matrices may lead to
numerical stability problems. However a good symmetric factorization may be
obtained using 2 x 2 pivots as well as simple 1 x 1 pivots as described in Appendix
C.

It has been shown analytically (Liu et al. 1987) that Hachtel’s method is numeri-
cally more robust than the method of state estimation with equality constraints
(Aschmoneit et al. 1977; Wu 1987). More precisely, the error in the solution intro-
duced due to the error in the input data (H, C, z) can be much larger if the method
of state estimation with equality constraints, rather than Hachtel’s method, is used.

3. Observability analysis

The theory of observability analysis (Krumpholz et al. 1980; Clements et al.
1983; Quintana et al. 1982; VanCutsem 1985; Monticelli and Wu 1985a, b; Monti-
celli and Wu 1986) was derived using the decoupled measurement Jacobian at the
flat start (unity voltage at zero angle). In the following, the measurement
(telemetered and zero-injections) Jacobian really refers to

[ o [}

where superscript 0 denotes that the quantity is evaluated at the flat start.
A network is observable if for the given set of measurements the state estimation
is solvable. The state estimation is solvable if and only if the measurement (including

telemetered and zero-injections) Jacobian matrix [l(-:I] has full rank. It has been
shown (Monticelli and Wu 1985a) that

If the Jacobian matrix has rank deficiency p, then the network needs p angle
(voltage) pseudo-measurements to make it observable.

— The location of these angle (voltage) pseudo-measurements, together with state
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estimation runs, can be used to identify the observable islands, the unobservable
branches, and candidates for measurement (flow, injection, voltage) to make the
network observable.

. .| C. .
— If the rank of the measurement Jacobian matrix H] is deficient, a zero
pivot will be encountered in the triangular factorization of the gain matrix

T C
el

— When the zero pivot occurs, the remaining elements in the column below it and
the row beyond it are necessarily all zero. (We shall refer to this as a zero pivot
with null row/column.)

In Appendix A, it is shown that there is a one-to-one correspondence in rank

deficiency between [fl] and the augmented matrix

0 0 C
K:={0 1 H ©)
C* H" 0

(for observability analysis, we may take o= 1, W; = 1). In other words, the zero
pivot with null row/column is encountered when the network is unobservable and it
occurs only at a column corresponding to an angle (voltage) variable, and cannot
occur at a column corresponding to A, or r. Note that because the matrix K is
indefinite, using a pivoting strategy that preserves symmetry, a zero pivot may occur
without the remaining row/column being zero. Therefore, unlike the case with the
gain matrix (Monticelli and Wu 1985a, b), when a zero pivot is encountered one has
to check further whether the remaining row/column are all zeros. However this does
not really introduce any additional work in implementation since in the factor-
ization process, the largest (in absolute value) element of the remaining row/column
R,.., is indeed monitored to ensure numerical stability. ( A pivot p; is accepted only
if |p;| > u- R, .) Therefore, observability analysis can be carried out during the
triangular factorization of the coefficient matrix K in Hachtel’s method for state
estimation.
The basic procedure in the observability analysis consists of the following.

1. Form the coefficient matrix K in (9).

2. Perform triangular factorization of K. If a zero pivot is encountered, check
whether the elements in the remaining row and column are zero. If so, intro-
duce angle (voltage) pseudo-measurement at the corresponding bus.

3. Solve the state estimation equation

—A 0
K|| r |=]|z (10)
X 0

with all the measurements set to zero, except the angle (voltage) pseudo-
measurements which are set at 0, 1, 2, ... etc.

4. Remove injection measurements which are adjacent to a branch that has non-
zero flows. These are irrelevant measurements.
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5. Update the coefficient matrix K. Perform triangular factorization. Introduce
angle (voltage) measurements when zero pivot with zero remaining row and
column are encountered.

6. Solve the state estimation equation (10) with all measurements set to zero,
except the angle (voltage) pseudo-measurements set at 0, 1, 2, etc. The sub-
network whose nodes have the same angle (voltage) belongs to the same
observable island. The branches crossing two observable islands are the
unobservable branches.

7. The candidates for additional measurements to make the network observable
are

(i) the voltage measurement where a voltage pseudo-measurement was
needed in step 5.

(ii) line flow measurements on unobservable branches

(iii) injection measurements adjacent to unobservable branches

The foregoing observability analysis can be used to place additional measurements
until observability is ensured.

If a decoupled version is used, P-observability and Q-observability may be
analysed separately or if P and Q measurements always come in pairs, only one
analysis is necessary. The observability analysis can also be implemented easily in
an ‘non-decoupled’ state estimator. As a matter of fact, the P-observability and the
Q-observability can be analysed simultaneously directly on the matrix K without
explicit decoupling, provided that the fill-ins in the off-diagonal blocks of C and H
in (6) are never entered. When a zero-pivot with null row/column is encountered, it
is easy to determine whether it belongs to the P part or the Q part, thus whether an
angle pseudo-measurement or a voltage pseudo-measurement needs to be added.

The proposed observability analysis algorithm has been implemented in the
Norwegian National Control Center. The algorithm for the state estimation used
happens to be in rectangular coordinates. It is interesting to note that the decoupled
Jacobian (in polar coordinates) at the flat start can be obtained directly from the full
Jacobian in rectangular coordinates at the flat start. Let the voltage at bus k be

E,=e +fi
= Ve (1)
Let the Jacobian in rectangular coordinates be written
aP P
2 of
Q Q
de of

where P and Q, respectively, denote real power measurements and reactive power
measurements (including voltage measurements.) Let the Jacobian in polar coordi-
nates be written as

o® P
® av E[Hm H,.V] )
Q Q Hgy Hy,

o0 v
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By the chain rule we have

® P |k P |l s
® ov| |a of| |8 ov 13)
Q Q| |Q Q| o o
® ov| |oe of| |8 av

When the Jacobian is evaluated at the flat start (¢, = 1,f, =0 or 6, =0, };, = 1) and
under the assumption that the branch impedances are purely imaginary, it can be
easily checked from the relevant mathematical equations that

P ap
de of 0 H,.,]
= 14
Q W [ng 0 (9
de of
e d
a8 v 01
o |1 of 0
a8 v
Combining eqgs. (12-15) we have
HPO= pr

Thus the decoupled Jacobian matrix can be obtained from the full Jacobian
matrix in rectangular coordinates. Similarly for C.

4. Bad data processing

Methods using the normalized residuals to detect and identify bad data have
been found to be reliable for single or multiple bad data. It has been shown
(Handshin et al. 1975; Monticelli and Garcia 1983) that for a single or multiple
non-interacting bad data, the largest normalized residual corresponds to a bad data.
For a general multiple bad data case, an efficient search scheme using normalized
residuals has been developed (Monticelli et al. 1986).

The residual vector r is the difference between the measured quantities and the
calculated quantities.

r=2z— h(x) (17

The normalized residuals are obtained from the residuals by the division of the
square root of the diagonal elements of the covariance matrix of r, ie.,

N = (diag R,) Y2r (18)
where
R, = cov (r) (19)

In the normal equations approach to state estimation, the calculation of the
diagonal elements of R, , as observed by Broussolle (1978), can be greatly facilitated
by the use of the sparse inverse of the gain matrix (H* WH).
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In Appendix B, it is shown that the covariance matrix R, of the residual vector r
is equal to

R, =oW 'A,W! (20)
where
0 0 C[™' |A, AT A}
0 oW ! H| =|A, A, Al (21)
cCT H' o0 A, As Ag

Hence, the diagonal elements of R, which correspond to positions of non-zero
element in K can be calculated using the sparse inverse of the coefficient matrix K.
The normalized residuals (18) can thercfore casily be computed using the sparse
inverse of K. However, it should be pointed out that since 2 x 2 pivoting is
employed in the triangular factorization, the sparse inverse technique needs to be
extended to such a case, and this is described in Appendix C. Actually only certain
diagonal elements of the inverse are required in computing the normalized residuals,
the sparse vector technique (Tinney, Brandwain and Chan 1985) can be applied. For
the tests performed in this paper, the sparse inverse technique is used. The detail
implementation of sparse vector technique in calculating the normalized residuals
will be reported elsewhere (Liu et al. 1987).

5. Test results

A. IEEE I4-bus system observability analysis

The measurement system of the IEEE 14-bus system used for the observability
analysis is taken from Krumpholz, Clements, and Davis (1980) as shown in Fig. 1.
Four cases are tested, and single precision is used. The branch admittances are set
to j1 and the weighting factors are set to 1. The threshold for zero is set at 0-0001.

..L Injection measurement —4&@— Flow measurement

"'"! ® Zero-injection pseudo-measurement

¢ ®

I@ le

®

®

Figure 1. [EEE 14-bus system for observability test.
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Case 1. Complete measurement system, zero injections are treated as measure-
ments.

Case 2. Injection measurement at bus 5 is removed, zero injections are treated
as measurements.

Case 3. Complete measurement system, zero injections are treated as equality
constraints.

Casc 4. Injection measurement at bus 5 is removed, zero injections are treated
as equality constraints.

Three methods for observability analysis have been employed for the test.

Method 1  Factorization-based observability analysis in state estimation using
normal equations.

Method 2 Factorization-based observability analysis in state estimation using
Hachtel’s method as proposed in this paper.

Method 3 Graph-theory-based observability analysis (VanCutsem 1985).

All three methods give correct results, namely, Cases 1 and 3 are observable and
Cases 2 and 4 are unobservable. In Cases 2 and 4, the network containing nodes (1,
2,3,4,5,7, 8,9) forms an observable island, and the candidates for measurement
placement are the injection measurements at buses 5, 10, and 14. However, when
Method 1 is applied to Case 2, if the parameter u, which controls the trade-off
between sparsity preservation and numerical stability in the triangular factorization
routine of the software used (Harwell Subroutine Library routine MA27A), was set
at 0-1, then it mistakenly classifies the network as observable. The parameter u is
used for pivot testing. (The detail strategy is given in (Duff, Reid, Munksgaard and
Nielsen 1979; Duff and Reid 1983) for both 1 x 1 and 2 x 2 cases.) A value of u
greater than 0-2 is sufficient here to obtain correct results. This further confirms the
fact that the formation of the gain matrix in the normal equation approach can
make the system ill-conditioned (Monticelli et al. 1985). The misclassification is due
to the round-off errors accumulated in an ill-conditioned system using an algorithm
with unsatisfactory numerical stability. Another way of viewing this result is that the

Figure 2. IEEE 14-bus system for bad data processing.
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factorization-based observability analysis performs better with a more robust
method such as that of Hachtel.

Bad data processing

The measurement system of the IEEE 14 bus-system used for testing bad data
processing, shown in Fig. 2, is taken from Clements and Davis (1985). The imped-
ances are all equal to 0+ jl. The standard deviations are set at 0-01, and the
weighting factors are set at 1. All the critical measurements (#4, 6, 8, 9, 10, 11, 13)
are treated as equality constraints. Two cases have been tested using the method for
calculating the normalized residuals proposed in this paper.

Case 1. Single bad data (5 ¢) in measurement #35.

The normalized residuals are calculated using Eqn. (11). The three largest ones
are shown below

Measurement #5 #3 #15
Normalized 3-1160 29817 2:9763
residual

The largest normalized residual corresponds to the bad data.
Case 2. Multiple bad data in measurement #2(5¢) and #5(70)

The three largest normalized residuals are

Measurement #2 #15 #7
Normalized 4:2455 3-9030 3-2013
residual

After removing the bad data #2 and re-cstimating the state, a set of new normal-
ized residuals are obtained. The top three are

Measurement #5 #3 #15
Normalized 3-1161 3-0559 3-0500
residual

After removing measurement # 5, the normalized residuals pass the bad data detec-
tion test, hence, the two bad data are correctly identified.

B. Norwegian 99-bus system

Figure 3 is a simplified overview of the 99-bus system found in the main grid in
southern Norway. The measurement system summarized below is the first metering
configuration used in the state estimator of the National Control Center (Gjelsvik et
al. 1987).
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Kristiansand

W Power plant
® Substation

Figure 3. Simplified Norwegian 99-bus network.

Measurements
Active power 72
Reactive power flows 8

Active power injections 28
Reactive power injections 39

Voltages 38
Zero injections 80
Total 265
Redundancy 1-35
Observability analysis
Three cases are tested.

Case 1. Complete measurement system.
Case 2. Loss of measurements in station A (1 voltage, 1 P-injection, 1 Q-
injection, 2 P-line flows).
Case 3. Loss of measurements in station B. (I voltage, 1 P-injection, 1 Q-
injection, 2 P-line flows).
Again three methods for observability analysis have been employed in the test,
as described in § A. All give correct results. Case 1 is both P and Q observable. Case
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2 is P-observable, but not Q-observable. Bus 3019 is unobservable (forms an observ-
able island by itself). The injections at buses 3011 and 3019 are candidates for mea-
surement placement. Case 3 is neither P-observable nor Q-observable. Bus 1750 is
unobservable and the candidates for measurement placement are the injections at
buses 1750 and 1752.

The CPU-time required for the three methods in the test is shown in Table 1.
The computer used was a PRIME 9955. The software for the graph-theory-based
observability analysis was provided by (VanCutsem 1985).

Normal equations Hachtel's method Graph-theory
w/equality constraints  w/equality constraints method
Case 1 1930 0767 0-245
Case 2 2-000 0918 4-163
Case 3 1-518 0973 89-042

Table 1. Comparison of CPU-time (in seconds).

One should ignore column 1 in Table 1 because we have an inefficient imple-
mentation of the normal-equation state estimation. The CPU-time for factorization-
based observability analysis in state estimation using Hachtel’s method does not
vary very much from case to case. The large CPU-time required in cases 2 and 3 in
the graph-theory method are for Q-observability analysis. Note that the Norwegian
99-bus system only has 8 reactive power flows. When there are few line flow mea-
surements, the graph-theory method for observability analysis must try a large
number of combinations of assigning the injection measurements, rendering the
method inefficient.

Bad data processing

The section of the network where bad data occurs is shown in Fig. 4. Two cases
are tested using the proposed procedure for calculating the normalized residuals.

Case 1. Bad data (5 ¢) in line flow measurement 3062-1122.

The three largest normalized residuals are

Measurement 3062-1122 3062-3052 3062 injection

Normalized 4-63 263 1-43
residual

The bad data is correctly identified.
Case 2. Bad data (5 o) in line flow measurements 3062—1122 and 1102-1092.

The three largest normalized residuals are

Measurement 3062-1122 1102-1092 1092 injection

Normalized 4-6589 3-8064 2-5546
residual
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Figure 4. Section of the 99-bus system for bad data.

After removing measurement 30621122 and re-estimating the state, the new nor-
malized residuals have their maximum at measurement 1102-1092 with a value of
3-8592. After removing this measurement the bad data detection is passed, thus the
two bad data are correctly identified.

The CPU-time required in various parts of the computation is shown in Table 2

Optimal Triangular Back Sparse
ordering  factorization  substitution  inverse
025 0-57 007 0-55

Table 2. CPU-time (sec.) breakdown.

Note that the time required for computing the sparse inverse is about the same as
that for triangular factorization.

6. Conclusion

Hachtel’s augmented matrix method with equality constraints for the WLS
problem has been applied to power system state estimation. It has previously been
found that this method of estimating the state of a power system is numerically
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more stable, computationally efficient, and simple to implement. In this paper we
have extended the triangular-factorization-based observability analysis and the
normalized-residual-based bad data processing to the state estimation algorithm
using the Hachtel’s method. In the Hachtel’s method at each iteration the linearized
equation has a different coefficient matrix K than the gain matrix in the normal
equations approach. In this paper, we have shown that

— A network is observable if and only if in the process of triangular factorization
of the coefficient matrix

0 0 C
K=|0 I H
C" H" 0

no zero pivot with the remaining row and column being all zero, is encountered.

— When the network is unobservable, the result of the state estimation with all the
measurements set to zero, except the angle (voltage) pseudo-measurements intro-
duced during the triangular factorization process provides us with the observa-
ble islands, unobservable branches, relevant measurements, and candidates for
additional measurements to make the network observable.

- The normalized residuals can be calculated using the sparse inverse of the coeffi-
cient matrix K.

The factorization-based observability analysis and the normalized-residual-
based bad data processing have been implemented and the tests on the IEEE 14-bus
system and the Norwegian 99-bus system show that

— The algorithms are easy to implement.
— The methods given consistently correct answers.

— The factorization-based observability analysis performs better with Hachtel’s
method because of its numerical robustness.

— The factorization-based observability analysis in Hachtel’s state estimator has a
predictable CPU-time requirement, whereas the graph-theory-based obser-
vability analysis routine used in the comparison requires considerably more
CPU-time for difficult cases where there are only a few line flow measurements.
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Appendices
A. Observability

We wish to show that there is a one-to-one correspondence between the rank
deficiency in the measurement Jacobian matrix and the coefficient matrix in
Hachtel’s method.

Theorem Assume that the rows of the r x n matrix C are linearly independent.

- 0 0 C
rank[c]=n—k¢-rank 0 I H|=r+m+n—k
C"H' O

where His an m x n matrix, m = n,and 0 < k < n.

Proof (=)

Let us partition the matrix

H| [H, H,
[C]‘[q cz] @AY
where

(1) the (m + r) x (n — k) matrix I:l(-:ll] has full rank.
1

; - H, | .
(2) the columns of [Hz] are the linear combinations of the columns of [ '], Le.,

Cz Cl

H,=H,P C,=C,P (A3)
0 0 C C, 10 0 ol][o o ¢ o]|[r o0 O
K__OIH1H2 o1 0 oflo 1 H, oo T 0O
|cT HT o0 o0 00 1 of|[cT HT 0o o|{0o O 1 P
cI HI 0 o© 0 0P 1[{]|0 0o o0 o0]J][0O OO 1

(A4)
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Hence rank K < r + m + n — k. Now we claim

0o 0 |
0 I H,| isnonsingular, ic.,
Cl HI O |
0 0 ¢ |la] [o] [«] [0
0 I H,||B|[=|0|=]|B]|=]|0 (A35)
cr °HY o ||y] [o] |v] |o
The left-hand side of (A5) is
Cia=0 (A6)
B+H,y=0 (A7)
Cla+Hp=0 (A8)

Substituting (A8) into a’(A6) + B"(A7), we have BB = 0, hence B = 0. Substituting
B =0 into (A7) and combining it with (A6), because the matrix [C'] has full rank,

1
we have y = 0. Substituting p = 0 into (A8), together with the fact that rows of C,
are linearly independent, we have o = 0. Hence the claim is proved, and rank
K=r+m+n-—=k

(=) By contradiction. Suppose rank I:g] #n—k, but it is equal to n — k + p,

p > 0 or p < 0. This implies that rank K = m + n + r — k + p, which is not equal to
m 4+ n + r — k, as assumed. Thus we reach a contradiction.

B. Covariance matrix of the residuals

Let x, be the true state vector, X be the estimated state, and 8x = x, — &. The
estimated state X satisfies the optimality conditions of the problem (3),

H'™Wr —C". =0 (B1)
k) =0 (B2)

where
r=z— h(X)  w + Hox. (B3)

Combining (B1), (B3), and the linearized equation of (B2), we have

0 0 C —o A 0
0 oW ' H||a 'Wr|=|w (B4)
Cc' H" 0 —ox 0

Let
o0 o C|*' [A, Al Al
0 aW' H| =|A, A, Al (BS)
cCt H" O Ay A A
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We have
a Wr=A,w (B6)
Hence
cov (r) = (@W 1A )W (oW 1A )T
= aW A (aW  HATW ! (B7)
From (B5), we have
CA;, =0 (BB)
(W YA, + HAs =1 (B9)
CTA] +H'A, =0 (B10)

Premultiply (B9) by A, , we have
AW A, = A, — A HA,

=A,+A,CA;
—A, (B11)
Hence
cov (r) = oW 1A,W! (B12)

C. Sparse inverse with 2 x 2 pivoting

Consider a symmetric sparse matrix Y, Y is to be factorized by Gaussian elimi-
nation. If Y is not positive definite, 2 x 2 matrices may be used as pivots so that
symmetry is still preserved and numerical stability is maintained (Duff et al. 1979;
Duff and Reid 1983). This means that the triangular factorization of Y takes the
form

Y =U"DU (&}]

where D is a symmetric block diagonal matrix with a mixture of blocks of size 1 x 1
or 2 x 2. U is upper triangular with 1’s along the diagonal. Furthermore, if rows i
and i + 1 belong to a 2 x 2 pivot block, then u; ;,, = 0. In this Appendix we shall
consider the issues of fill-ins and the calculation of the sparse inverse when 2 x 2
pivoting is used.

Let us consider the symmetric matrix

Y
v=[3 v ©

Y11 hz:l
Su se Y, =
Ppo ! [}’11 Va2

and y,, may be zero, but the 2 x 2 matrix Y, is nonsingular. We want to use Y, as
the pivot. The triangular factorization (C1) in block form can be written as

R [ K I
Y}Yz‘Ug"UIODZOUZ] ©)

The first step of triangular factorization may be expressed as
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Y, Y,;] [UT o]|[p, 07[U, U3]
= C4
[Y; Yz] [U} ij]lo vif{o 1 4

where
U, =1 (C5)
U, =Y, Y, (Co6)
D, =Y, (C7)
Y:=Y, - YiY['Y; (C8)
The matrix Y} will be further factorized and eventually we have
Y; =UiD, U, (©9)

Thus we may view Y in (C2) as the submatrix after triangular factorization has
performed up to the i-th row/column, i.c., y,, is actually occupying the i-th row and
the i-th column of the partially factorized matrix.

Consider the casey;; # 0, and y;4, ; = 0, the corresponding elements in the tri-
angular factor, i. u;; and u;,,,;, will all be non-zero because of the multiplication
(see (C6)) by a generally full matrix Y; '. Therefore, u;.,, ; is a fill-in. The fill-ins
during this step of using a 2 x 2 pivot in the triangular factorization is illustrated in
Fig. 5. It is thus clear that in U, the i-th row and the (i + 1)-th row have the same
sparsity structure.

i i+1 i k

i x b'd e X ®
i+1 x - x ® x
J x 0 e X ®
k 0 X , ® x

Figure 5. The fillins introduced

during triangular factorization with

2 x 2 pivot. x represents a nonzero
and ® represents a fill-in.

Let
Y '=2Z (C10)
or
Y —1
vl -1 ]
It can easily be verified that
Z=(01-UZ+UD)! (C12)

Using the block form of the matrices, we have

Z, Z, _[I—Ul —U3][z, Z, +[l1¥[>1 0o 1* €13
2T 7z, | o 1-uUjzf z, ulp, UID,
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Since U, = I, from (C13) we obtain
Zy=-U,Z,
Z,=—-U,ZI + (D) !

In term of its elements, (C14) and (C15) can be expressed as

n
Z,=— Z U Zyy r=ii+1; j2i+2
k=i+2

er=_ z urkzrlc+{Dll}rr> r=i, i+1
k=i+2

Ziivr=— 2 UpZipy o+ D7 Y4

k=i+2

(C14)
(C15)

(C16)

(C17)

(C18)

Suppose we want to find Z;; at a location u;; # 0. From (C16) it is seen that we
need Z,; as long as uy # 0, therefore Z,; also occupies a location for which the
corresponding element in U is nonzero. Similar arguments, together with the fact
that row i and row j of U have the same sparsity structure, lead us to the result that
Zis Ziyy,iv1» Zi 14y can all be computed with the clements in Z that occupy

1

nonzero elements in U. Thus we conclude that the sparsc inverse can be similarly

computed with 2 x 2 pivoting.




