“Dynamic Simulation of Chemical Engineering Systems by the Sequential Modular Approach”

Authors: Magne Hillestad and Terje Hertzberg,
Affiliation: NTNU, Department of Chemical Engineering
Reference: 1986, Vol 7, No 3, pp. 107-127.

Keywords: Modular integration, sequential, coordinational algorithm, prediction of tear variables, interpolation, multirate

Abstract: An algorithm for dynamic simulation of chemical engineering systems, using the sequential modular approach, is proposed. The modules are independent simulators, and are integrated over a common time horizon. Interpolation polynomials are used to approximate input variables. These input polynomials are updated before modules are intergrated in order to interpolate output from preceding module(s) and thereby increase coupling and stabilize the computation. Tear stream variables have to be predicted at future time tn+1 and various prediction methods are proposed.

PDF PDF (2095 Kb)        DOI: 10.4173/mic.1986.3.1

DOI forward links to this article:
[1] G. Endrestøl, Terje Sira, Monica Østenstad, Tahir I. Malik, M. Meeg and J. Thrane (1989), doi:10.4173/mic.1989.4.2
[2] Sidharth Abrol and Courtland M. Hilton (2012), doi:10.1016/j.compchemeng.2012.02.005
[3] J.F. Andrus (1991), doi:10.1016/0898-1221(91)90050-E
[4] Alexandre C. Dimian, Costin S. Bildea and Anton A. Kiss (2014), doi:10.1016/B978-0-444-62700-1.00004-8
[5] Nailah Fasihah Sidek and Noorlisa Harun (2023), doi:10.1063/5.0148557
[1] ANDRUS, J.F. (1979). Numerical solution of systems of ordinary differential equations separated into subsystems, SIAM J. Numerical Anal., 16, 606-611 doi:10.1137/0716045
[2] BALCHEN, J.G., FJELD, M., SAELID, S. (1983). Significant problems and potential solutions in future process control, paper presented at the Annual AIChE Meeting, Washington DC.1983.
[3] BARRETT, A. WALSH, J.J. (1979). Improved chemical process simulation using local thermodynamic approximations, Comp. and Chem. Engg., 3, 397-402 doi:10.1016/0098-1354(79)80063-0
[4] BIRTA, L.G. (1980). A Quasi-Parallel Method for the Simulation of Loosely Coupled Continuous Subsystems, Mathematics and Computers in Simulation, 22, 189-199 doi:10.1016/0378-4754(80)90045-2
[5] CAMERON, I.T. (1981). PhD thesis Numerical Solution of Differential-Algebraic Equations in Process Dynamics, Dept. of Chemical Engineering and Chemical Technology, Imperial College of Science and Technology, London SW7.
[6] CAMERON, I.T. (1983). Large scale transient analysis of processes - the state of the art, Lat. Am. J. Chem. Eng. Appl. Chem., 13, 215-228.
[7] COOK, W.J. BROSILOW, C.B. (1980). A Modular Dynamic Simulation for Distillation Systems, Paper presented at the 73rd Annual AIChE Meeting, Chicago III..1980.
[8] ELLISON, D. (1981). Efficient automatic integration of ordinary differential equations with discontinuities, Mathematics and Computers in Simulation, 23, 12-20 doi:10.1016/0378-4754(81)90003-3
[9] ENRIGHT, W.H., JACKSON, K.R., NØRSETT, S.P. THOMSEN, P.G. (1986). Interpolants for Runge-Kutta formulas, Trans. of Math. Software.submitted.
[10] FAGLEY, J. CARNAHAN, B. (1983). Efficiency and flexibility in dynamic chemical plant simulation, Proceedings of PAChEC-83, The Third Pacific Chemical Engineering Conference, Seoul, Korea, 8-11 May.1983, pp. 78-84.
[11] GEAR, C.W. (1971). Numerical Initial Value Problem in Ordinary Difierential Equations, Prentice Hall Inc., Englewood Cliffs, N.J.
[12] GEAR, C.W. (1980). Automatic multirate methods for ordinary differential equations, Department of Computer Science, University of Illinois at Urbana-Champaign, Report UIUCDCS-R-82-1103.
[13] GOMM. W. (1981). Stability analysis of explicit multirate methods, Mathematics and Computers in Simulation, 23, 34-50 doi:10.1016/0378-4754(81)90005-7
[14] GUNDERSEN, T. HERTZBERG, T. (1983). Partitioning and tearing of networks - applied to process flowsheeting, Modeling Identification and Control. 4, 139-165 doi:10.4173/mic.1983.3.2
[15] HACHTEL, G.D. SANGIOVANNI-VINCENTTELLI, A.L. (1981). A survey of third-Generation simulation techniques, Proceedings I.E.E.E. 69, 1264-1280 doi:10.1109/PROC.1981.12166
[16] HILLESTAD, M. (1986). Thesis for the degree of dring, Lab. of Chemical Engineering, The Norwegian Institute of Technology, N-7034 Trondheim-NTH.in preparation for submission.
[17] HLAVACEK, V. (1977). Analysis of a complex plant steady state and transient behavior, Comp. and Chem. Engg., 1, 75-100 doi:10.1016/0098-1354(77)80011-2
[18] KURU, S. WESTERBERG, A.W. (1985). A Newton-Raphson based strategy for exploiting latency in dynamic simulation, Comp. and Chem. Eng., 9, 175-182 doi:10.1016/0098-1354(85)85007-9
[19] LIU, Y.C. BROSILOW, C.B. (1983). Modular Integration Methods for Large Scale Dynamic Systems, Paper presented at AIChE Diamond Jubilee Meeting, Washington DC.1983.
[20] ORAILOGLU, A. (1979). A multirate ordinary differential equation integrator, Dept. of Computer Science, University of Illinois at Urbana-Campaign, Report UIUCDCS-R-79-959.
[21] PATTERSON, G.K. ROZSA R.B. (1980). DYNSYL: A general-purpose dynamic simulator for chemical processes, Comp. and Chem. Engg., 4, 1-20 doi:10.1016/0098-1354(80)80009-3
[22] PALUSINSKI, O.A. WAIT, J.V. (1978). Simulation method for combined linear and nonlinear systems, Simulation, 30, 85-95 doi:10.1177/003754977803000305
[23] PONTON, J.W. (1983). Dynamic process simulation using flowsheet structure, Comp. and Chem. Engg., 7, 13-17 doi:10.1016/0098-1354(83)85002-9
[24] SKELBOE, S. (1984). Multirate Integration Methods, Elektronik Centralen, DK-2970 Hørsholm, Denmark.
[25] SØDERLIND, G. (1980). DASP3 - A Program for Numerical Integration of Partitioned Stiff ODEs and Differential-Algebraic Systems, Report TRITA-NA-8008, Numerical Analysis and Computer Science, The Royal Institute of Technology, S-10044 Stockholm 70, Sweden.

  title={{Dynamic Simulation of Chemical Engineering Systems by the Sequential Modular Approach}},
  author={Hillestad, Magne and Hertzberg, Terje},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}