MODELING, IDENTIFICATION AND CONTROL, 1986, voL. 7, No. 3, 107-127
doi:10.4173/mic.1986.3.1

Dynamic simulation of chemical engineering systems by the
sequential modular approach+

MAGNE HILLESTAD{ and TERJE HERTZBERG§

Keywords: modular integration, sequential, coordination algorithm, prediction of
tear variables, interpolation, multirate

An algorithm for dynamic simulation of chemical engineering systems, using the
sequential modular approach, is proposed. The modules are independent simula-
tors, and are integrated over a common time horizon. Interpolation polynomials
are used to approximate input variables. These input polynomials are updated
before modules are integrated in order to interpolate output from preceding
module(s) and thereby increase coupling and stabilize the computation. Tear
stream variables have to be predicted at future time ¢, ,, and various prediction
methods are proposed.

1
- 1. Introduction
: Steady-state process simulation is the most widely used tool for design and opti-
> mization of large scale process systems today. For these purposes steady-state
. models are adequate. There are also several dynamic process simulation systems
available today (Cameron 1983; Hlavacek 1977), but for one reason or another, no
system has yet been accepted as a general tool for large scale dynamic process
simulation. A general tool for simulation of the dynamic behaviour of large scale
processes is desired (Balchen, Fjeld and Saelid 1983), because there are so many
areas where such a tool can be applied, which extend beyond those of steady-state
simulation. For example
operability studies
control systems evaluation
start-up and shut-down studies
planning and control of plant commissioning
hazard analysis
response due to equipment failure
effect of changes in process and control parameters
operator training
studies of batch process operations

Dynamic process simulation systems will have to tackle many numerical and
computer scientific problems; some of these are discussed here. Stiffness will be

Received 27 January 1986.

t Copyright 1986, Pergamon Press Ltd. This paper has been published in Computers and
Chemical Engineering, Vol. 10, and is reprinted in MIC with permission from the publisher.

§ Author to whom correspondence should be addressed. Institutt for Kjemiteknikk, NTH,
7034 Trondheim, Norway

108 M. Hillestad and T. Herizberg

restrictive on integration steplength when explicit integration is used. Implicit inte-
gration codes, on the other hand, require approximation of the Jacobian, which may
be very laborious for large scale systems. The problem of stiffness can be reduced or
even climinated by applying a multi-rate method (Gear 1980) to the system. This
paper will address this class of methods in more detail, and suggests the use of
independent modules to be calculated in a sequential manner.

The method described here utilizes the fact that the equations represent chemical
process units or modules, and exploits the information of process topology.
Modular based flowsheeting will make the process modeling phase very convenient
and user friendly. The proposed method is also computationally favourable when
the system is sparse and the cost of function evaluations is high. This method will
also enable existing numerical software, like integration codes, to be easily imple-
mented independently of the overall system. Most of the commercially available
steady-state process simulation systems are sequential modular systems. By the pro-
posed method the use of these systems may be extended to dynamic simulation by
modifying the executive system, and by adding dynamic modules. In this way the
effort required to build a dynamic process simulation system will be relatively small.

Although this presentation does not include any large scale problems, the multi-
rate nature is demonstrated more than adequately by two small examples. The
subject of this paper will be continued in a following paper. which will treat more
realistic problems.

There are many reasons that have prevented a widespread use of dynamic simu-
lation of large scale process systems. The more significant reasons are that the devel-
opment of dynamic models is time consuming, the cost of engineering time is high,
that available tools are not easy to use, and there is a lack of confidence in the
validity of the models. Moreover, the system of equations is not easy to solve,
because of some properties this system of equations possesses. Typically one finds
that

It is a system of differential/algebraic equations.

It is a system of large dimensionality (> 1000), but sparse (< 1% of the Jacobian
are non-zero elements).

It is a system of stiff equations.
It is a system of non-linear equations.
There may occur discontinuities (time and state events).

These properties will cause trouble for the integration routine, if they are not given
proper attention.

Modeling chemical engineering systems will often result in a mixed system of
differential and algebraic equations (DAE). This equation system can be handled by
diagonal implicit Runge-Kutta methods (DIRK) discussed by Cameron (1981),
whereas Gear and Petzold (1982) apply the BDF method and discuss various prob-
lems related to the index of the DAE system.

The difficulties associated with discontinuities are in detecting them, in locating
the time at which they occur, and in restarting the integration efficiently. For
Runge-Kutta methods these difficulties are examined by Ellison (1981) and Enright,
Jackson, Nersett and Thomsen (1986); a paper by Gear and Osterby (1984) covers
these problems for multi-step methods.

Dynamic simulation of chemical engineering systems 109

Stiffness is usually a problem when the equations have time constants that differ
by orders of magnitude, and is characterized by the integration steplength no longer
being controlled by accuracy, but rather by stability (see Fig. 4(c), where this is the
case). Applying an explicity integration method to a system with widely different
time constants will cause the integration steplength almost to vanish and the
number of function evaluations to increase dramatically. An A-stable integration
method is a method where the steplength seldom will be controlled by stability. In
general no explicit integration method is A-stable and consequently they are unsuit-
able for solving large scale chemical engineering problems. By solving the composite
system simultaneously it is necessary to apply an implicit integration method. This
will lead to an implicit algebraic system that has to be solved at each integration
step. This is usually done by a modified Newton iteration scheme where the Jaco-
bian has to be updated from time to time. These computations are expensive and
the Jacobian is updated only when the code has difficulties with convergence.

The philosophy of the multi-rate integration methods is to isolate some of the
most rapidly decaying components and apply a suitable integration method and
steplength to them, The slowly decaying components may use an explicit integration
method and steplength best suited for them.

In this paper it is suggested that the well known sequential modular approach,
where the equations are segregated by physical process units, be used. Modules may
still have time constants which differ greatly in magnitude, but applying an implicit
integration method to a module is more efficient than applying it to the whole
system. This is because the dimension of the whole system is larger than the dimen-
sion of a module and consequently there is much less work involved in computing
the Jacobian of a module.

2. Methods

In this section, a brief survey of different methods for dynamic process simuia-
tion is given and an attempt is made to clarify some terms used in the literature. As
with steady-state simulation, dynamic simulation systems can be classified as either
equation based or modular based systems. Cameron (1983) gives a thorough review
of various systems and methods applied to large scale dynamic process simulation.

2.1. Equation based methods

The principal feature of equation based systems is that they operate on equa-
tions. In contrast, modular based systems see the module as a ‘black box” and are
not able to analyse the internal structure of the modules. With equation based
systems, it is of utmost importance to solve the system of equations effectively. This
can be done by using different ways of partitioning and by using sparse matrix
techniques. A simulation system based on equation operations, like DPS (Wood
et al. 1984), analyses the occurrence matrix and decomposes the system to get a
block triangular system. It is then solved by direct or iterative techniques. In a
recent paper by Kuru and Westerberg (1985) the flowsheet is decomposed so that
the individual units can be treated separately. A predictor—corrector method is used
for integrating the system of equations. The algorithm allows each unit, depending
on its dynamic activity, to solve the corrector with different number of Newton—

110 M. Hillestad and T. Hertzberg

Raphson iterations. Hachtel et al. (1981) give a survey of large scale decomposition
theory.

Another different and promising way of solving sets of stiff differential equations
is by partitioning the system into two sub-systems—a slow and a fast. Different
integration methods are applied to each sub-system and different steplengths are
used depending on the behaviour of the sub-systems. The two sub-systems are
usually connected by means of polynomial interpolation or extrapolation.

There are several papers in the literature which treat the numerical aspect of
these methods called multi-rate methods. Partitioning strategies, on the other hand,
have not been treated exhaustively in spite of the fact that partitioning plays a very
critical role in the overall performance of the numerical integration. By using a
multi-rate method the stiffness problem is reduced or even eliminated. Among those
who have contributed to the subject, a few are referred to here. Gear (1980) and
Orailoglu (1979) apply Adams formulas on the two sub-systems, while Andrus
(1979) uses Runge-Kutta formulas. Gomm (1981) analyses the stability of a multi-
rate method. Skelboe (1984) uses the BDF integration methods for both sub-
systems, and also gives a stability analysis of the method. Sederlind (1984) has
developed a program system, DASP3, that integrates partitioned systems. It may be
a stiff system of ordinary differential equations and a system of differential-algebraic
equations. The nonstiff part is integrated by the classic fourth order Runge-Kutta
method, and the third order BDF method is applied to the stiff part. Partitioning
can also be done in other ways; for example, by dividing the system inte a linear
and a nonlinear part, as described by Palusinski and Wait (1978). These and other
techniques for effective solution of large stiff equation systems are discussed in more
detail by Hillestad (thesis, in preparation).

2.2, Modular based methods

The principal feature of modular based systems is that the system provides input
and parameter values to the modules that return with the corresponding output.
The modules, representing a process unit or a group of units, are linked together
according to the process topology. There are two different approaches to modular
dynamic simulation.

First, there is an approach which solves all the modules including intercon-
nections simultaneously by a single integration routine. This is called simultaneous
modular by Hlavacek (1977) and Fagley and Carnahan (1983), but by Patterson and
Rozsa (1980) and Cameron (1983) it is called coupled modular. The former is more
descriptive, but in steady-state simulation the same label is used on a totally differ-
ent approach (two-tier). With this method each module is computed equally many
times, as all modules are integrated by a common routine. The modules consist
merely of model equations that provide the integration routine with derivatives. The
general purpose process simulation system DYNSYL (Patterson and Rozsa 1980)
has an option for this approach.

With the other approach, all modules are integrated over a common time inter-
val or time horizon. Modules are provided with individual integration routines, and
are in a sense independent simulators. This is called sequential modular by Hlavacek
(1977), while Cameron (1983) uses uncoupled modular, and Fagley and Carnahan
(1983) use a third term—independent modular. In fact, the latter label actually com-
prises the two former, because independent modules can either be computed in a

Dynamic simulation of chemical engineering systems i1

sequential or parallel manner or by a combination of both. Liu and Brosilow (1983)
name this approach modular integration.

3. Independent modular approach

As already mentioned, all modules are, by this approach, integrated over a
common time horizon set by a coordination algorithm or coordinator. The philos-
ophy is to have each module nearly independent of the overall system as illustrated
by a typical module in Fig. 1. By integrator we normally mean a routine for solving
a system of ordinary differential equations; but partial differential equations may
also be solved if there are devices for proper discretisation of the equations.

The user or modeler is left with great freedom in choosing integrator, type of
model, printout routines, etc., when composing an independent module, The model
equations may be physically based as well as empirical input—output correlations.
Depending on model type, different routines are selected to fit with the module. If
the modules contain steady-state models, equation solvers are used for generating
output from the module.

Normally integration routines are used and these will advance the modules in
time with different speed or steplengths depending on the integration method, local
error tolerance, and stiffness of the model. The independent modular approach is
therefore a multi-rate integration method. Integration routines are chosen based on

1

Initiate Switching External
states. function disturbances
w(t,x) Contin. /Discrete
Set start/
stop time
for the
integrator ¥(t)
Read
parameters
Model : Thermo-
e Integrator [) le| physical
x'=£(x.8,v) property
routines.
un(t)
Printout Input variables
routine. are generated by
l polynomial.
Generate
output
variablea.
Y-dix.M-¥)
Y =gyk’tgyu’
gV’

Figure 1. Typical independent module.

112 M. Hillestad and T. Hertzberg

properties of the module; fast or slow, discontinuities or not, differential-algebraic
or purely differential equations.

On the other hand, this approach requires a coordinator to take care of commu-
nication between modules, predict tear stream variables, interpolate input variables,
etc. The coordinator can be made in different ways and some proposals are found in
the literature.

Liu and Brosilow (1983) have proposed three different algorithms for indepen-
dent modular integration. The modules are parallel in the sense that all input vari-
ables are treated as iteration variables. These are iterated to some level of accuracy
at each time horizon. The algorithms do not exploit information of flowsheet
structure.

Ponton (1983) suggests using a sequential calculation order based on formation
about the flowsheet., A criterion for tearing is also stated. It is suggested to tear a
cycle by tearing the stream leaving the largest capacity. Input variables are held
constant over the time horizon, which will give an approximation of order zero. In
order to attain accuracy the time horizon will therefore have to be very small for all
practical problems.

Birta (1980) starts off with the composite system of equations and divides this
into sub-systems. The method is thus not modular, but rather equation oriented.
The method is mentioned here because the same philosophy also can be applied to
independent modules. Off block-diagonal elements are treated as input variables
and these are approximated by third order interpolation or extrapolation poly-
nomials. The polynomials interpolate the input values (u,, u,. u, . u,_,). Birta
(1980) also gives an analysis of the cost benefits of his method relative to the simul-
taneous solution of equations. This algorithm is also parallel because all input vari-
ables are iterated simultaneously.

4. The proposed method

The algorithm presented here is based on the use of independent modules, as
shown in Fig. 1, computed in a sequential order. Input variables are described by
interpolation polynomials. Before a module is to be computed, its input polynomials
are updated to interpolate the last calculated output from the preceding module(s).
This is done in order to increase coupling between modules, but also to stabilize the
computation.

For each input variable the polynomial interpolates the values (u,, u,_;, ---,
u,, and u,). The corresponding discrete times (t,, t,_,, ..., t,_,) are not necessarily
a constant mesh of points, but may have variable stepsize. All input polynomials
have the same order p = ¢ + 1, and also the same mesh of time points in order to
minimise coordination work.

The interpolation polynomial with centre at , and order p is thus ut)

W)= 3 byir (- 6) = ul) + Ol — 1] 0

This polynomial is such that

1

Upj= 2, byt j—t) =04)

i=0

Dynamic simulation of chemical engineering systems 113

P
u, = Z by, ; 'i'(fn_‘k)i‘l (3)
i=1
The polynomial coefficients, by, are not estimated by these equations, but by a more
sophisticated updating procedure partly described by Gear (1971) and Cook and
Brosilow (1980).
To control the accuracy of the polynomials, there are three factors that can be
‘adjusted’

the principal truncation error constant (b . 1)
the time horizon (th)
the polynomial odcer (p)

To illustrate, assume we are integrating a sequence of modules from ¢, to ¢, 4,
and having polynomials, u,(t), for all input variables. Before integrating a module,
its polynomials should be updated to interpolate the last calculated input, namely
u,,, and u,, ,, and centralize at t,., ,, to get u, . ,(t). This sequential procedure will
have a smaller principal truncation error constant, and it will also be computa-
tionally more stable than the parallel method (Hillestad, 1986).

The time horizon, th=1,,, —t,, should be as small as possible to obtain
highest accuracy. However, a small time horizon is very inconvenient because it will
increase the computational load drastically. Selecting the time horizon is discussed
later.

The effect of polynomial order is not particularly obvious. The optimal order is
not the highest possible order, but it can be calculated as in Gear (1971). In the
algorithm proposed here the polynomial order is simply increased from one (initial
value) to maximum order (user supplied), unless discontinuities occur. If the poly-
nomial order is p and the integrators have at least order p + 1, then the overall
integration order is p (Gear, 1980). This interpolation procedure will correspond to
a g-step method of integration with variable stepsize and variable order p =g + L
Since the centre 1, is chosen equal to the last calculated point, it will correspond to
an implicit integration method. Observing this, it will be easier to discuss stability
with respect to the time horizon and order.

4.1. Algorithm
After tear streams and precedence ordering are determined, the algorithm can be
summarized by the following points
I. Predict tear stream variables at ¢,,, ;.
I1. Repeat for all modules in precedence order.
1. Compute the difference between calculated and extrapolated input vari-
ableatr,,,.
&= Upyy — Ulysy) 4)
Compute the difference between calculated and extrapolated derivative at
lpi1-

0= Uy — Upllysy))

114 M. Hillestad and T. Hertzberg

Deviation values are computed for all input variables of the present
module.

2. Update the interpolation polynomial by the following recursion formula
b"+1=D'b"+L1‘8+L2‘5 (6)

Where D is some variant of Pascal’s triangle matrix. D, L, and L,
vary from time horizon to time horizon, but a fast updating procedure is
used to compute these (Hillestad, in preparation). This is a rapid recur-
sion formula since the same matrix D and vectors L, and L, are used for
all input variables in a sequence. The algorithm does not involve matrix
inversion as long as the polynomial order is fixed. The resulting poly-
nomial, u,, ,(t), is now interpolating the following values: (u,, ; 1, 4, Uy, - 1,
vees Uy iy and 1,).

3. Use u,, (1), when integrating the module over the time horizon to get
estimates of states and their derivatives at the end: x,,; and f,, .

4, Compute output from module y,,,, and y,, ;.
5. Equate these to the input of the succeeding module(s).
III. Compute relative error between predicted and calculated tear stream vari-
ables.
IV. Update time horizon.
If the sequence outlined in II results in an error as calculated in 11T which is greater
than the specified tolerance, then there are two possible actions. (1) We can recom-
pute the sequence with the same time horizon, or (2) we can reduce the time horizon

and recompute the sequence. When recomputing the sequence with the same time
horizon, I1.1 and I1.2 are slightly modified to become:

IL1 €=Uyt — Upyq(losy) W)
O =l — tUpiillnsy) (8)
II.2. bn-l-]. = b,,+l + Ll *E + Lz . 5 (9)

4.2. Tear streams

Perhaps the most critical point in succeeding with this method is having good
estimates of tear stream variables at t,,,. We have to predict these variables if we
want to use the independent modular approach consistently. There are, however,
several ways of obtaining estimates of these variables, because we have already cal-
culated and stored historical data necessary to predict future values.

Using the algorithm discribed here, we have to predict both u, ., and uj,,, for
all tear streams. The following six ways of predicting these variables are suggested
below

1. Keep the polynomials, u,{t), of the tear streams as they are. This corresponds
to extrapolation of the tear variables by means of existing polynomials.

2. Extrapolate the states and their derivatives of the module preceding a tear
stream

Dynamic simulation of chemical engineering systems 115

q
x".‘,l = Z '}'J' * X,,,_j (10)
i=0
q
f.oi=2 vt (11)
i=o0

3. States and their derivatives of the module preceding a tear stream are esti-
mated by using the predictor

q
Xnry = 2, 0" Xy j+ By F, (12)
j=1
q
f..= Z M Xpr1-j (13)
j-o

4. Use a linearized model to predict states and their derivatives for the module
preceding the tear stream.

K"+1=an"+|'n (14)
fn-rl = anu +S, (15]

The matrices P, and Q, and the vectors r, and s, are calculated with the
Jacobian of the module at t, and previously calculated states (neglecting input
and external disturbances).

5. Predict the tear stream variables by rigorous integration of the preceding
module.

6. Calculate the whole sequence of modules to obtain an estimate of tear vari-
ables. This method, however, may abandon the advantage of using fewer
function evaluations than straightforward methods. By increasing integration
tolerance and by using simplified thermo-physical models as suggested by
Barratt and Walsh (1979), this method of predicting tear stream variables will
perhaps not be more expensive than conventional methods. Equations (7)+9)
are used when recomputing the sequence.

The prediction of derivatives in eqns. (11), (13) and (15) may be exchanged with a
call to the model routine. The first three methods are based on serially correlated
models, while the latter three are more or less rigorous models. Methods 2-5 are
based on predicting tear stream variables by first predicting internal states of the
preceding module to a tear stream and then computing output stream variables. By
using methods 2-5, we assume that these modules contain sufficient state informa-
tion to be able to predict future states and derivatives. The philosophy of using such
prediction modules is that they contain sufficient memory to be able to predict
future states almost independently of the form of the input of these modules. Each
tear stream of a flowsheet may, of course, use different prediction methods and
should obviously use the method best suited. Other methods for prediction may be
constructed as well, but the critical points will always be stability, accuracy and
speed of the prediction method.

The network theory is, naturally, the same for dynamic and steady-state simula-
tion, but the criteria for choosing the best tear set are different. If we want to do
tearing automatically as described by Gundersen and Hertzberg (1983), it is obvious
that several additional criteria for weighting the streams have to be implemented for

116 M. Hillestad and T. Hertzberg

*dynamic’ tearing. Ponton (1983) suggests that a general rule is to tear the stream
leaving the unit in a loop having the largest capacity or time constant. This is
reasonable because it is easier and more accurate to predict output from a slow unit
than a rapid one. There are other criteria that should also be considered.

Number of stream variables: We wish to use the least possible number of iter-
ation variables, which is related to the total error estimate of the tear stream vari-
ables.

Number of prediction modules: Using methods 2-5, we want to predict the
necessary tear stream variables by using as few prediction modules as possible,
which is related to the speed of prediction.

Time constant and time delay: It is convenient to approximate process units by
a time delay and by first order dynamics. Using methods 2-5, which are ‘one
module methods’, the time constant and time delay are obviously measures of how
well the output is predicted. Since we do not know the exact input to these predic-
tion modules a priori, the sensitivity of the input over the time horizon should be as
small as possible. The time horizon, time constant and the time delay should be
such that the output (tear stream) at t,,,, 18 mainly affected by the internal states of
the module. If there is a choice, one should pick the tear set with prediction modules
having the largest time delay and time constant.

Ease in computing the Jacobian: Using method 4, which is a linearized model,
the Jacobian should be as easy as possible to evaluate in order to increase speed.

Ease in integrating the module: Using method 5, the stiffness ratio of the module
should be low in order to integrate with high speed.

Discontinuities : External disturbances imposing discontinuities on modules pre-
ceding tear streams can only be handled by a rigorous integration, preferably by
using an integrator made to detect these. Method 5 or 6 will have to be used.

There is much more to be said about determining the best tear set and choosing
the right method for prediction of tear variables in dynamic simulation, as almost
nothing has been done in this area.

4.3. Time horizon

Liu and Brosilow (1983) suggest adjusting the time horizon (th) by comparing
the calculated error of tear variables and the maximum tolerance limit (e_,).
Knowing that all stream variables are of order p, one finds

err = O((thP+1) (16)

This gives the following updating scheme for the time horizon, which is imple-
mented in most integration codes for steplength adjustment as

(th) = (thY(eg/ernV @+ 1) 0-9 (17)

The absolute error, err, may be estimated as the norm of the difference between
predicted and calculated tear variables; thus

err = [[u, —u,l| (18)

The time horizon will certainly also be restricted by stability as well. Since we
already are controlling the error, the stability is automatically ensured. However
this requires that we recompute the sequence with a reduced time horizon when the
error is greater than the specified limit. Much effort will be wasted in this way, so it

Dynamic simulation of chemical engineering systems 117

would be desirable to know, a priori, if the chosen time horizon is within the region
of stability. How this can be done is not quite clear, but evidently the stability
region of the corresponding multi-step integration method should be used. As
already mentioned, the time horizon should be chosen also by considering the time
constant and time delay of prediction modules.

Another criterion for choosing the right time horizon will also be considered.
The time horizon is set equal to the maximum steplength calculated by the different
integrators

(th) == max(h,) (19)
i=1,n
In eqn. (19), k; is the calculated steplength of module number i provided by the
integration routine. This method does not require any initial value of the time
horizon as eqn. (17) does. Furthermore, since it is not desirable to let the user
specify an initial time horizon, eqn. (19) can at least be used for calculating the
initial time horizon.

4.4. Implementation

The user gives initial states for all modules. But the system will also be able to
compute steady-state values to be used as initial states in a dynamic simulation.
Error tolerance and maximum order of polynomials are user supplied variables. The
system will also store all variables, when terminating, to make it possible to restart
the simulation with other experimental conditions, if desirable. External dis-
turbances are user specified subroutine(s) that may be connected to any module.
Disturbances may be physically derived models of the surroundings or they may be
empirical correlations. The surroundings may, for example, be the pressure relief
system, the ambient temperature, or the procedure for starting up a pump. Dis-
turbances will often create discontinuities in the unit model and these are more
likely to happen when a state variable has reached a certain threshold (state event),
or at a certain time (time event). State events are determined by a user supplied
switching function as illustrated in Fig. 1. They are taken care of by letting the
particular integration routine detect the discontinuity and locate the time. Then, the
time horizon is reduced to match this time, and the sequence is recomputed. To
restart after a discontinuity has occurred, the same procedure will be used as pro-
posed for multi-step integration methods by Gear and Osterby (1984).

5. Results

The proposed algorithm is currently being tested, so every aspect of it is not yet
fully investigated. Here, two simple example problems are shown, where steplength
control and accuracy are compared with the simultaneous solution of the equations.

5.1. Problems

These problems are constructed arbitrarily by means of two building blocks—
SP and MT. SP and MT are types of modules and the number in parentheses
corresponds to module number. Here, SP is a splitter with two output streams and
one input stream. MT is a mixer with two input streams and one output stream. In

118 M. Hillestad and T. Hertzberg

)
| w

»| MT(1) NP SP(2) > SP(3) | 5 o

L

Figure 2. Example 1. Precedence ordering {2)-{3)-(1).

addition, MT has the possibility of having an external disturbance, which is an extra
input stream. The models describing these units are very simple with only two state
variables each (see appendix), but the main point is to illustrate two aspects of the
approach—namely steplength and accuracy.

5.2. Steplength

To illustrate the steplength control of the two solution methods, the number of
function evaluations are compared in Table 1. This very clearly illustrates the
savings in the number of function evaluations by using the proposed algorithm. For
comparison, Euler’s method (embedded with the modified Euler’s method for esti-
mation of local error) and the same integration tolerance (10 #) are applied to all
integration. Theoretically, the number of evaluations with the sequential approach
will never exceed that of the simultaneous solution in any module provided that the
same integration method and tolerance are used. However this is not quite true for
module 5 of example 2. This discrepancy stems from the fact that after every new
time horizon, the initial steplength is set to an unnecessarily small value. But,
although this can be avoided by simply recalling the last steplength from the pre-
vious time horizon, the extra evaluations, by doing this, are surprisingly few. Of
course, we should use an initial steplength equal to the last estimate from the pre-
vious time horizon if that is possible with the routines available.

The plots in Fig. 4 are steplength as a function of time for example 1. Only
accepted steps are plotted, except in Table 1 both accepted and rejected steps are
included (two evaluations per step).

In Fig. 4, it can be seen that module 2 is the restrictive module with respect to
steplength up to time ~1-3, and from there, module 3 is the restrictive one. From
these two problems, which are not even stiff problems, it is obvious that there is a

Py

SP(1) 3 MT(2) Y MT(4) L ¢ o

SP(3) N SP(S) |5 o

.

Figure 3. Example 2. Precedence ordering (1)-(3)-(2)-(5)}-(4).

Dynamic simulation of chemical engineering systems 119

Module Simultaneous Sequential
number solution solution

1 884 297
Example 1 2 884 641
| 3 884 13
sum 2652 1711
1 513 127
2 513 208
Example 2 3 513 319
4 513 140
5 513 519
sum 2565 1313

Table 1. Number of function evaluations.

lot to be saved in the number of function evaluations. Even when using an initial
integration steplength of 0-001, as illustrated, 35 and 49 per cent savings are
achieved in example 1 and 2, respectively. For stiff and large scale problems the
savings are expected to be much higher.

This comparison is not quite fair as the overhead is not taken into account, but
for large scale problems the overhead will become relatively less significant (Birta
1980). The overhead will also be taken into account in the comparison when larger
and more realistic problems are treated in a later study.

5.3. Accuracy

By reducing the number of function evaluations one expects accuracy to be
reduced, but that is not the case. The saved evaluations are those not necessary to
attain integration accuracy. However, the expected accuracy of the sequential
method is not as high as that of the simultaneous solution, because prediction is
involved in the sequential method. Prediction may also be involved in the simulta-
neous solution, but the prediction is then done over a much shorter time interval.

The two examples shown below indicate that there are no significant deviations
between the solution trajectories of the two methods. The worst case which is
module 2 of example 1 is shown in Fig. 5. The deviation between the solutions of x,
is due to its strong dependency on x; when x, is small. Method 3 (egns. (12) and
13)) is used for prediction of tear stream variables for the two examples.

6. Discussion

Perhaps the greatest advantage of the independent modular approach is the
multi-rate nature of the method. Slow units, like a flash tank, need few function
evaluations over the time horizon, while fast units, like control units, have to do
several more evaluations to attain the same integration accuracy. The total number
of function evaluations required is therefore reduced when compared to the simulta-
neous solution, as illustrated. This advantage is very attractive, when the function
evaluations are laborious as is often the case in process simulation with chemical
unit operations involving heavy thermo-physical property estimations. However, the
independent modular approach requires more administration, so increased program

120 M. Hillestad and T. Hertzberg

overhead should not override any savings. Small non-stiff problems involving few
equations will certainly not benefit from using this approach with respect to com-
puter time. In general, a multi-rate method can only be competitive if one of two
conditions is true; either the cost of function evaluation is high, or the system of
equations is sparse (few interpolations). In large scale process simulation it is likely
that both are true.

For a modular system in general and an independent modular system in particu-
lar it is easier to locating modeling or data errors. The software will be less complex
and therefore easier to maintain. This is a well known fact from steady-state simula-
tion. Also, modeling or setting up new process configurations will be easier. By this

I]
h -
[-]
r4
g
3
o
o
q_
8
[l T T T L) T T T T T 1
o] 1 =2 = -+ s (=] T B a 10
TIME
(a)
g

STEPLENGTH

« 100

010

.004

()

Dynamic simulation of chemical engineering systems 121

J

1.000

STEPLENGTH

1 1 T T T 1 i L
o 1 2 = “*+ s [=] T a 9 Ll=]
TIME
()
o
[=]
O
k.
A
['R
w
o
o]
=)
54
o
-
o
(=]
- T T

4 2 3 4 5 & 7 B8 5 o
@ TIME

Figure 4. (g) Integration steplength of simultaneous solution of example 1. {b) Steplength of
module 1. (¢) Steplength of module 2. (d) Steplength of module 3.

n‘1

approach it is possible to do ‘modeling in the large’ and the process engineer may
test different control or process structures and designs within a short time.

The independent modular approach makes it very easy to exchange integration
routines with newer and better ones. We are not tied to one particular choice of
integration method. It should also be mentioned, as an advantage of the indepen-
dent modular approach, that it is even possible to use the analytical solution by
integrating the model using the approximative input polynomials. In addition, the
integration routine does not even need to solve an initial value problem, but may

122 M. Hillestad and T. Hertzberg

o
- -

-
m-

o

- T T T T 1

o5 5 L = A 5 s = a a 0
[»]

T T T T T T T T T 1

0o 1 = -] -+ =1 L= T =3 2 10

TIME

Figure 5. Solutions of module 2 of example 1. Sequential modular solution (dotted line} and
simultaneous solution (solid line).

equally well be solving a two point boundary value problem in time. One or several
states may be design variables, which are to meet specified design requirements
within a specified time.

Another attractive aspect of the independent modular approach is that there is
also great freedom with respect to choice of model type. Any module may use any
type of model, provided that it is consistent with the rest of the module. Using a
simultaneous solution, it seems to be difficult to combine differential equations with
input—output models.

By solving the modules simultancously with a single integration routine, the
integrator will solve a system of equations which also includes the algebraic inter-
connections. This is avoided when an independent modular approach is used. The
total system of equations that is seen by the integration routines will therefore be
less complex than if all modules were solved simultaneously.

The sequential modular approach is well investigated, and much well-established
theory and software exists for steady-state simulation. This may well be built upon
for extension to dynamic simulation. Dynamic modules will have to be built, but
with some modifications, the executive system will certainly suffice. Using the
sequential modular approach in dynamic simulation, the tear stream convergence
problem will normally not be any problem at all. This is due to the capacities and
dead times of process units, which act like filters to changes in tear variables. Con-
vergence may only be a problem when the time horizon is chosen greater than the
time lag of a loop.

Discontinuities have to be handled efficiently by a dynamic process simulator.
Using the independent modular approach, the detection and localization of the time
when the discontinuity occurs will be left to the particular integration routine. The
time horizon will then be reduced to match the discontinuity point, and the integra-

Dynamic simulation of chemical engineering systems 123

tion is then restarted. When a discontinuity occurs, there is no point in representing
the stream variables by polynomials interpolating points established before the dis-
continuity. The polynomial order has to be reduced according to Gear and @sterby
(1984). They also propose how the new time horizon should be chosen when
restarting after a discontinuity has occurred.

By comparison of the sequential and parallel variants of the independent
modular approach, it is obvious that the sequential involves fewer iteration vari-
ables and will therefore give a smaller error estimate of tear streams. Using the
sequential approach, less work is involved in predicting tear variables for the same
reason. The sequential variant will also be numerically more stable because the
sequential and the parallel approach will correspond to Gauss-Seidel and Jacobi
iteration, respectively. The sequential procedure has stability properties similar to
an implicit integration, while the parallel procedure has stability properties similar
to an explicit integration. The parallel approach may be computationally preferable
only when using a multi-processor computer where each module is computed on an
individual processor, i.e. parallel processing.

The sequential approach is limited by the assumption of directed information
streams. The simulation will break down when an information stream changes
direction unless the system automatically recovers by finding a new precedence ord-
ering, tear streams and prediction modules. Unfortunately the information streams
are not always identical to mass and energy streams. Quite often process units are
affected by down stream units through the output pressure. This is handled by
letting the output pressure become an input information stream to the actual
module.

The independent modular approach will impose an external error control in
addition to the error control of the integrators. This is unwanted, but is a necessary
part of the coordination algorithm. However, as already stated, by calculating the
modules sequentially there will normally be no problem with convergence of tear
streams. When compared to the simultaneous solution of equations, the accuracy
will normally be poorer due to prediction of tear variables. But if predictions are
accurate, the same accuracy may be attained with the proposed method. This was
the case when running examples 1 and 2 using prediction method 3.

Finally, the stability analysis for a multi-rate method, like the independent
modular approach, is non-trivial. In fact, having merely two sub-systems, each with
different step-control, will involve complex mathematics for finding the region of
stability, as demonstrated by Gomm (1981). Since we are primarily interested in the
region of stability for the time horizon, an analysis of the corresponding multi-step
integration method will suffice assuming that the order of the integrators is at least
p + 1 (Gear 1980). The internal integrator steplengths are controlled by the local
error tolerances and will therefore lie within their regions of stability.

7. Conclusion

The proposed algorithm for sequential modular dynamic process simulation is
promising. This is due to the multi-rate nature of the method which will be most
competitive when the function evaluations are expensive, and the system of equa-
tions is sparse. Besides building on well investigated theory, the sequential modular
approach also leaves the modeler with great freedom in the choice of integration
method and type of model. In sequential modular dynamic simulation, the tear
variables will not cause any convergence problems as long as the time horizon is

124 M. Hillestad and T. Hertzberg

chosen properly. With modifications, existing steady-state process simulation
systems may be extended to dynamic simulation.

ACKNOWLEDGMENT

We thank Professor S. P. Norsett at the Department of Numerical Mathematics
for his help with the presentation and for his comments and suggestions during the
work.

List of symbols

b, Polynomial coefficients defined in eqn. (1).

D Pascal’s triangle matrix.

Conax Maximum error tolerance of tear variables; user-supplied.

err Absolute error of tear variables; calculated.

ff. State equations and the Jacobian.

d. 9., 4., 9, Output equations, and partial derivatives of g w.r.t. x, u and v.

h; Steplength of module no. i.

L,L, Vectors from eqn. (6).

P Degree of interpoiation polynomials.

P, Matrix used in eqn. (14).

q Number of time intervals used in the interpolation procedure
g=p—1.

Q, Matrix used in eqn. (15).

Vector used in eqn. (14).

s, Vector used in eqn. (15).

L, Discrete time.

th Time horizon = £,y — f,,.

u(t) Exact input function.

u, (1), u,1) Approximated input functions; polynomials of degree p and central-
ized at t,,.

u,, u, Input value at ¢,.

u,,u, Tear variables; predicted and calculated.

v(t) External disturbance functions; user-supplied.

X, State vector at ¢,,.

Y. Output vector at f,.

o;, By Coefficients in the predictor egn. (12).

¥; Coefficients in the extrapolation eqgn. (10) and (11).

n; Coefficients in the extrapolation eqn. (13).

£ Difference calculated in eqn. (4).

o Difference calculated in egn. (5).

REFERENCES

ANDRUS, J. F. (1979). Numerical solution of systems of ordinary differential equations
separated into subsystems. SIAM J. Numerical Anal., 16, 606-611.

BALCHEN, J. G., FJELD, M., and SaALID, S. (1983). Significant problems and potential solutions
in future process control, paper presented at the Annual AIChE Meeting, Washington
DC (1983).

Dynamic simulation of chemical engineering systems 125

BARRETT, A. and WALsH, J. J. (1979). Improved chemical process simulation using local ther-
modynamic approximations. Comp. and Chem. Engg., 3, 397-402.

BIRTA, L. G. (1980). A Quasi-Parallel Method for the Simulation of Loosely Coupled Contin-
uous Subsystems. Mathematics and Computers in Simulation, 22, 189-199.

CAMERON, L T. (1981). (Ph.D. thesis) Numerical Solution of Differential-Algebraic Equations in
Process Dynamics. Dept. of Chemical Engineering and Chemical Technology, Imperial
College of Science and Technology, London SW7.

CAMERON, 1. T. (1983). Large scale transient analysis of processes—the state of the art. Lat.
Am. J. Chem. Eng. Appl. Chem., 13, 215-228.

Cook, W. I. and BrosiLow, C. B. (1980). A Modular Dynamic Simulation for Distillation
Systems, Paper presented at the 73rd Annual AIChE Meeting, Chicago TI11. (1980).

ELuson, D. (1981). Efficient automatic integration of ordinary differential equations with
discontinuities. Mathematics and Computers in Simulation, 23, 12-20.

EnriGHT, W. H., Jackson, K. R., NersetT, S. P. and THoMsEN, P. G. Interpolants for Runge-
Kutta formulas. Trans. of Math. Software (submitted).

FaGLey, J. and CarnaHAN, B. (1983). Efficiency and flexibility in dynamic chemical plant
simulation, Proceedings of PAChEC-83, The Third Pacific Chemical Engineering Con-
Jerence, Seoul, Korea, 8-11 May (1983), pp. 78-84.

GEAR, C. W. (1971). Numerical Initial Value Problem in Ordinary Differential Equations
(Prentice Hall Inc., Englewood Cliffs, N.J.).

GEAR, C. W_ (1980). Automatic multirate methods for ordinary differential equations, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, Report
UIUCDCS-R-80-1000.

Gear, C. W. and PerzoLp, L. R. (1982). ODE methods for solution of differential/algebraic
systems, Dept. of Computer Science, University of Illinois at Urbana-Champaign,
Report UTUCDCS-R-82-1103.

GEAR, C. W. and OsTerBY, O. (1984). Solving ordinary differential equations with discontin-
uities. Trans. on Math. Software, 10, 2344,

Gomm, W. (1981). Stability analysis of explicit multirate methods. Mathematics and Computers
in Simulation, 23, 34-50.

Gunpersen, T. and HERTZBERG, T. (1983). Partitioning and tearing of networks—applied to
process flowsheeting. Modeling Identification and Control. 4, 139-165.

HacHTEL, G, D, and SANGIOVANNI-VINCENTTELLI, A. L. (1981). A survey of third-Generation
simulation techniques. Proceedings I.E.E.E. 69, 1264-1280.

HiLLestap, M. (1986). Thesis for the degree of dr.ing., Lab. of Chemical Engineering, The
Norwegian Institute of Technology, N-7034 Trondheim-NTH (in preparation for
submission).

HLAvACEK, V. (1977). Analysis of a complex plant—steady state and transient behavior.
Comp. and Chem. Engg., 1, 75-100.

KURU, S. and WESTERBERG, A. W. (1985). A Newton—Raphson based strategy for exploiting
latency in dynamic simulation. Comp. and Chem. Engg., 9, 175-182.

Liu, Y. C. and Brosicow, C. B. (1983). Modular Integration Methods for Large Scale
Dynamic Systems, Paper presented at AIChE Diamond Jubilee Meeting, Washington
DC (1983).

ORAILOGLU, A. (1979). A multirate ordinary differential equation integrator, Dept. of Com-
puter Science, University of Illinois at Urbana-Campaign, Report UIUCDCS-R-79-
959.

PATTERSON, G. K. and Rozsa, R. B. (1980). DYNSYL: A general-purpose dynamic simulator
for chemical processes. Comp. and Chem. Engg.. 4, 1-20.

PaLusinskl, O. A. and Warr, J. V. (1978). Simulation method for combined linear and nonlin-
ear systems. Simulation, 30, 85-95.

PontoN, J. W. (1983). Dynamic process simulation using flowsheet structure, Comp. and
Chem. Engg., 7, 13-17.

SKELBOE, S. (1984). Multirate Integration Methods, Elektronik Centralen, DK-2970
Hersholm, Denmark.

SeperLiND, G. (1980). DASP3—A Program for Numerical Integration of Partitioned Stiff
ODEs and Differential-Algebraic Systems, Report TRITA-NA-8008, Numerical
Analysis and Computer Science, The Royal Institute of Technology, S-10044 Stock-
holm 70, Sweden,

126 M. Hillestad and T. Hertzberg

Woob, R. K., THAMBYNAYAGAM, R. K., NOBLE, R. G. and SEBASTIAN, D. J. (1984). DPS—A
digital simulation language for process industries, Simulation, 221-234.

Appendix

In both modules, MT and SP, the states x, and x, are level and concentration of
the liquid in the tanks, respectively. The initial conditions and the parameters were
chosen arbitrarily for the modules shown in Figs. 2 and 3. The parameter vector p
and the initial conditions are figures attached to the particular module number.

Module MT
Input variables

u, Flowrate of stream 1

U, Concentration of stream 1

ls Flowrate of stream 2

u, Concentration of stream 2
External disturbances

U, =Ps Flowrate is constant

U, =Pa Concentration is constant
State equations

xy =y +u +u;— Pz\/(xtl)/Pl e xq(a@) = x40
Xy = (v4(v; — X3) + (s — X3) + ts(tiy — X))/ (P1Xy) .. x5(a) = Xz

Output equations

y1i = P2/(x1) Flowrate
Va2 = X3 Concentration
V1 =05p, x;/\/(xl}
Va=1Xx3
Module SP
Input variables
uy Flowrate
u, Concentration
State equations

xy=(uy —(p2+ Pa}\/(xl))/!’l; x4(@) = x4
x5 = (uy(us — X,))/(p1x1); X2(a) = X3

Output equations

Via= pZ\/(xl) Flowrate of stream 1

V1,2 = X2 Concentration of stream 1
V2,1 = p;,\/(x,) Flowrate of stream 2

V2,2 = X3 Concentration of stream 2
Y11 =05p, x'n’\./(xi)

V1,2 = X3

y’z, 1= 0'5P3x'1/\/(x|)

’
Ya2,2= X5

Dynamic simulation of chemical engineering systems

Numerical values for example 1
Module 1 Module 2 Module 3

MT SP SP
py = 100 py=10 p, =18
pa= 12 p,=13 p, =09
pa= 12 p3=32 p3 =05
ps = 003

xlo = 0'5 xlo = 2'1 xlo = 4'6
Xag = 0'02 Xag = 0'09 x:o = 0'89

127

