**Page description appears here**

“Short-term ASV Collision Avoidance with Static and Moving Obstacles”

Authors: Bjørn-Olav H. Eriksen and Morten Breivik,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2019, Vol 40, No 3, pp. 177-187.

     Valid XHTML 1.0 Strict


Keywords: Autonomous surface vehicles, collision avoidance, model predictive control

Abstract: This article considers collision avoidance (COLAV) for both static and moving obstacles using the branching-course model predictive control (BC-MPC) algorithm, which is designed for use by autonomous surface vehicles (ASVs). The BC-MPC algorithm originally only considered COLAV of moving obstacles, so in order to make the algorithm also be able to avoid static obstacles, we introduce an extra term in the objective function based on an occupancy grid. In addition, other improvements are made to the algorithm resulting in trajectories with less wobbling. The modified algorithm is verified through full-scale experiments in the Trondheimsfjord in Norway with both virtual static obstacles and a physical moving obstacle. A radar-based tracking system is used to detect and track the moving obstacle, which enables the algorithm to avoid obstacles without depending on vessel-to-vessel communication. The experiments show that the algorithm is able to simultaneously avoid both static and moving obstacles, while providing clear and readily observable maneuvers. The BC-MPC algorithm is compliant with rules 8, 13 and 17 of the the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following rules 14 and 15.

PDF PDF (1310 Kb)        DOI: 10.4173/mic.2019.3.4



DOI forward links to this article:
  [1] Bjørn Olav H. Eriksen, Morten Breivik, Erik F. Wilthil, Andreas L. Flåten and Edmund F. Brekke (2019), doi:10.1002/rob.21900


References:
[1] Abdelaal, M. and Hahn, A. (2016). Abdelaal, M, and Hahn, A. NMPC-based trajectory tracking and collision avoidance of unmanned surface vessels with rule-based COLREGs confinement. In Proc. of the 2016 IEEE Conference on Systems, Process and Control (ICSPC). Melaka, Malaysia, pages 23--28. doi:10.1109/SPC.2016.7920697
[2] Benjamin, M.R., Leonard, J.J., Curcio, J.A., and Newman, P.M. (2006). Benjamin, M, R., Leonard, J.J., Curcio, J.A., and Newman, P.M. A method for protocol-based collision avoidance between autonomous marine surface craft. Journal of Field Robotics. 23(5):333--346. doi:10.1002/rob.20121
[3] Bitar, G., Eriksen, B.-O.H., Lekkas, A.M., and Breivik, M. (2019). Bitar, G, , Eriksen, B.-O.H., Lekkas, A.M., and Breivik, M. Energy-optimized hybrid collision avoidance for ASVs. In Proc. of the 17th IEEE European Control Conference (ECC). Naples, Italy, pages 2522--2529. doi:10.23919/ECC.2019.8795645
[4] Casalino, G., Turetta, A., and Simetti, E. (2009). Casalino, G, , Turetta, A., and Simetti, E. A three-layered architecture for real time path planning and obstacle avoidance for surveillance USVs operating in harbour fields. In Proc. of the 2009 IEEE OCEANS-EUROPE Conference. Bremen, Germany. doi:10.1109/oceanse.2009.5278104
[5] Chauvin, C. (2011). Chauvin, C, Human factors and maritime safety. Journal of Navigation. 64(4):625--632. doi:10.1017/S0373463311000142
[6] Cockcroft, A.N. and Lameijer, J. N.F. (2004). Cockcroft, A, N. and Lameijer, J. N.F. A Guide to the Collision Avoidance Rules. Elsevier. .
[7] Dalsnes, B.R., Hexeberg, S., Flaaten, A.L., Eriksen, B.-O.H., and Brekke, E.F. (2018). Dalsnes, B, R., Hexeberg, S., Flaaten, A.L., Eriksen, B.-O.H., and Brekke, E.F. The neighbor course distribution method with Gaussian mixture models for AIS-based vessel trajectory prediction. In Proc. of the 21st IEEE International Conference on Information Fusion (FUSION). Cambridge, UK, pages 580--587. doi:10.23919/ICIF.2018.8455607
[8] Eriksen, B.-O.H., Bitar, G., Breivik, M., and Lekkas, A.M. (2019). Eriksen, B, -O.H., Bitar, G., Breivik, M., and Lekkas, A.M. Hybrid collision avoidance for ASVs compliant with COLREGs rules 8 and 13--17. 2019. Submitted to Frontiers in Robotics and AI, preprint available at https://arxiv.org/abs/1907.00198. .
[9] Eriksen, B.-O.H. and Breivik, M. (2017). Eriksen, B, -O.H. and Breivik, M. Modeling, Identification and Control of High-Speed ASVs: Theory and Experiments, pages 407--431. Springer International Publishing, 2017. doi:10.1007/978-3-319-55372-6_19
[10] Eriksen, B.-O.H. and Breivik, M. (2017). Eriksen, B, -O.H. and Breivik, M. MPC-based mid-level collision avoidance for ASVs using nonlinear programming. In Proc. of the 1st IEEE Conference on Control Technology and Applications (CCTA). Mauna Lani, Hawai'i, USA, pages 766--772, 2017. doi:10.1109/CCTA.2017.8062554
[11] Eriksen, B.-O.H. and Breivik, M. (2018). Eriksen, B, -O.H. and Breivik, M. A model-based speed and course controller for high-speed ASVs. In Proc. of the 11th IFAC Conference on Control Applications in Marine Systems, Robotics and Vehicles (CAMS). Opatija, Croatia, pages 317--322. doi:10.1016/j.ifacol.2018.09.504
[12] Eriksen, B.-O.H., Breivik, M., Wilthil, E.F., Flaaten, A.L., and Brekke, E.F. (2019). Eriksen, B, -O.H., Breivik, M., Wilthil, E.F., Flaaten, A.L., and Brekke, E.F. The branching-course model predictive control algorithm for maritime collision avoidance. Journal of Field Robotics, 2019. 36(7):1222--1249. doi:10.1002/rob.21900
[13] Eriksen, B.-O.H., Wilthil, E.F., Flaaten, A.L., Brekke, E.F., and Breivik, M. (2018). Eriksen, B, -O.H., Wilthil, E.F., Flaaten, A.L., Brekke, E.F., and Breivik, M. Radar-based maritime collision avoidance using dynamic window. In Proc. of the 2018 IEEE Aerospace Conference. Big Sky, Montana, USA, pages 1--9. doi:10.1109/AERO.2018.8396666
[14] Hagen, I.B., Kufoalor, D. K.M., Brekke, E.F., and Johansen, T.A. (2018). Hagen, I, B., Kufoalor, D. K.M., Brekke, E.F., and Johansen, T.A. MPC-based collision avoidance strategy for existing marine vessel guidance systems. In Proc. of the 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia, pages 7618--7623, 2018. doi:10.1109/ICRA.2018.8463182
[15] Harati-Mokhtari, A., Wall, A., Brooks, P., and Wang, J. (2007). Harati-Mokhtari, A, , Wall, A., Brooks, P., and Wang, J. Automatic identification system (AIS): Data reliability and human error implications. Journal of Navigation. 60(3):373--389. doi:10.1017/S0373463307004298
[16] Hexeberg, S., Flaaten, A.L., Eriksen, B.-O.H., and Brekke, E.F. (2017). Hexeberg, S, , Flaaten, A.L., Eriksen, B.-O.H., and Brekke, E.F. AIS-based vessel trajectory prediction. In Proc. of the 20th IEEE International Conference on Information Fusion (FUSION). Xi'an, China, pages 1--8. doi:10.23919/ICIF.2017.8009762
[17] Kuwata, Y., Wolf, M.T., Zarzhitsky, D., and Huntsberger, T.L. (2014). Kuwata, Y, , Wolf, M.T., Zarzhitsky, D., and Huntsberger, T.L. Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE Journal of Oceanic Engineering. 39(1):110--119. doi:10.1109/joe.2013.2254214
[18] Levander, O. (2017). Levander, O, Autonomous ships on the high seas. IEEE Spectrum. 54(2):26--31. doi:10.1109/MSPEC.2017.7833502
[19] Loe, O. A.G. (2008). Loe, O, A.G. Collision Avoidance for Unmanned Surface Vehicles. Master's thesis, Norwegian University of Science and Technology (NTNU). .
[20] Paris, C. (2017). Paris, C, Norway takes lead in race to build autonomous cargo ships. Accessed: 2019-05-22. https://www.wsj.com/articles/norway-takes-lead-in-race-to-build-autonomous-cargo-ships-1500721202. .
[21] Schuster, M., Blaich, M., and Reuter, J. (2014). Schuster, M, , Blaich, M., and Reuter, J. Collision avoidance for vessels using a low-cost radar sensor. In Proc. of the 19th IFAC World Congress. pages 9673--9678, 2014. doi:10.3182/20140824-6-ZA-1003.01872
[22] Svec, P., Shah, B.C., Bertaska, I.R., Alvarez, J., Sinisterra, A.J., von Ellenrieder, K., Dhanak, M., and Gupta, S.K. (2013). Svec, P, , Shah, B.C., Bertaska, I.R., Alvarez, J., Sinisterra, A.J., von Ellenrieder, K., Dhanak, M., and Gupta, S.K. Dynamics-aware target following for an autonomous surface vehicle operating under COLREGs in civilian traffic. In Proc. of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo, Japan, pages 3871--3878, 2013. doi:10.1109/IROS.2013.6696910
[23] Wilthil, E.F. (2019). Wilthil, E, F. Maritime Target Tracking with Varying Sensor Performance. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), 2019. .
[24] Wilthil, E.F., Flaaten, A.L., and Brekke, E.F. (2017). Wilthil, E, F., Flaaten, A.L., and Brekke, E.F. A Target Tracking System for ASV Collision Avoidance Based on the PDAF, pages 269--288. Springer International Publishing, Cham. doi:10.1007/978-3-319-55372-6_13


BibTeX:
@article{MIC-2019-3-4,
  title={{Short-term ASV Collision Avoidance with Static and Moving Obstacles}},
  author={Eriksen, Bjørn-Olav H. and Breivik, Morten},
  journal={Modeling, Identification and Control},
  volume={40},
  number={3},
  pages={177--187},
  year={2019},
  doi={10.4173/mic.2019.3.4},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.