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Abstract

This article considers collision avoidance (COLAV) for both static and moving obstacles using the branching-course
model predictive control (BC-MPC) algorithm, which is designed for use by autonomous surface vehicles (ASVs).
The BC-MPC algorithm originally only considered COLAV of moving obstacles, so in order to make the algorithm
also be able to avoid static obstacles, we introduce an extra term in the objective function based on an occupancy
grid. In addition, other improvements are made to the algorithm resulting in trajectories with less wobbling. The
modified algorithm is verified through full-scale experiments in the Trondheimsfjord in Norway with both virtual
static obstacles and a physical moving obstacle. A radar-based tracking system is used to detect and track the moving
obstacle, which enables the algorithm to avoid obstacles without depending on vessel-to-vessel communication.
The experiments show that the algorithm is able to simultaneously avoid both static and moving obstacles, while
providing clear and readily observable maneuvers. The BC-MPC algorithm is compliant with rules 8, 13 and 17
of the the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following
rules 14 and 15.
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1 Introduction

Most, if not all, parts of society are currently being auto-
mated at a rapid pace. One example is the development of
autonomous cars, as exemplified by the development efforts
made by e.g. Tesla, Google and Uber. Such a trend is also
ongoing in the maritime domain, where autonomous tech-
nology presents opportunities for increased cost efficiency,
in addition to reducing the environmental impact of goods
and passenger transport. One example of this is the Yara
Birkeland project in Norway, where an electrically-powered
autonomous cargo ship will replace 40000 diesel-powered
truckloads of fertilizer each year by 2022 (Paris, 2017).
Furthermore, it is reported that in excess of 75% of mar-
itime accidents are caused by human errors (Chauvin, 2011;
Levander, 2017), which also reveals a potential for increased
safety by introducing autonomous technology at sea. Em-
ploying ASVs in areas where other vessels are present does,

however, require a robust COLAV system in order to avoid
collisions and operate safely.

There exist several algorithms for ASV COLAV, e.g. the
velocity obstacle (VO) algorithm (Kuwata et al., 2014), the
A* algorithm (Schuster et al., 2014) and algorithms based
on model predictive control (MPC) and optimization (Ben-
jamin et al., 2006; Švec et al., 2013; Abdelaal and Hahn,
2016; Hagen et al., 2018). These algorithms are, however,
designed with the idea of “one size fits all”, where the same
algorithm is used to solve both situations requiring proactive
and reactive behaviors. A challenge with this approach is
that the algorithm must be able to solve problems of a wide
range sufficiently well, which makes the algorithm difficult
to design and tune. A different approach is to utilize a hy-
brid architecture (Loe, 2008; Casalino et al., 2009), where
the complementary strengths of different algorithms can be
combined in a layered architecture. An example of a hybrid
architecture is shown in Figure 1, where the COLAV system
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Figure 1: A hybrid architecture with three layers. The sup-
port functions provide relevant information for the
COLAV algorithms, including prediction of ob-
stacle trajectories, static obstacles from electronic
nautical charts (ENC) and situational awareness
in the form of COLREGs situations. Courtesy of
(Eriksen et al., 2019b).

is divided into three layers, namely a high-level, mid-level
and a short-term COLAV algorithm. The high-level planner
performs long-term planning by finding a path or trajectory
from an initial position to a goal position while avoiding
static obstacles, satisfying time constraints and minimizing
energy consumption. The mid-level algorithm attempts to
follow the planned path or trajectory from the high-level
planner, while making local modifications in order to avoid
moving obstacles. This algorithm should be designed to
complywith themaneuvering rules of the COLREGs, which
dictate how vessels should behave in situations where there
exists a risk of collision with other vessels (Cockcroft and
Lameijer, 2004). The short-term COLAV algorithm inputs
the modified trajectory from the mid-level algorithm, and
should have low computational requirements ensuring that
the COLAV system can react to sudden changes in the envi-
ronment. This algorithm should also serve as a final safety
barrier in situations where e.g. the mid-level algorithm fails
to find a solution (Eriksen and Breivik, 2017b). In addition,
the short-term algorithm should have a shorter planning
horizon than the mid-level algorithm. This makes the short-
term algorithm inherently capable of handling situations
where moving obstacles do not comply with the COLREGs,
and the maneuvering aspects of rules 14 and 15, which reg-
ulate the behavior in head-on and crossing situations, may
need to be ignored to comply with the COLREGs. The algo-
rithm should, however, maneuver in accordance with rules
14 and 15 when the situation allows it.

The authors have performed a significant amount of work
on the hybrid architecture in Figure 1, concerning e.g.
model-based vessel controllers (Eriksen and Breivik, 2017a,
2018), short-term COLAV (Eriksen et al., 2018, 2019b),
mid-level COLAV (Eriksen and Breivik, 2017b) and a high-
level planner interfaced to the mid-level algorithm (Bitar
et al., 2019). In an upcoming article (Eriksen et al., 2019a),
we populate the hybrid architecture with algorithms includ-
ing the BC-MPC algorithm discussed in this article, and
demonstrate COLAV compliant with COLREGs rules 8 and
13–17 in simulations. Work has also been performed on
obstacle trajectory prediction (Hexeberg et al., 2017; Dal-
snes et al., 2018). For the short-term COLAV layer, we
initially focused on the dynamic window (DW) algorithm,
using a radar-based tracking system for detecting and track-
ing obstacles (Wilthil et al., 2017). The reason for using
exteroceptive sensors such as radars for detecting obstacles
is that they do not depend on vessel-to-vessel communi-
cation or collaboration with other vessels, hence enabling
avoidance of vessels which do not have or use automatic
identification system (AIS) transponders. Another ques-
tionable aspect of AIS is that other vessels may provide
incorrect information (Harati-Mokhtari et al., 2007), which
can be difficult to detect and handle. However, there is a fair
amount of noise on obstacle estimates originating from sys-
tems using exteroceptive sensors, which the DW algorithm
was shown not to handle sufficiently well in full-scale exper-
iments (Eriksen et al., 2018). We therefore developed the
BC-MPC algorithm for short-term COLAV (Eriksen et al.,
2019b), which is based on MPC and designed to be robust
to obstacle estimate noise. This algorithm is shown to have
good performance in full-scale experiments, but originally
only accounts for moving obstacles.

In this article, we further develop the BC-MPC algorithm
to also handle avoidance of static obstacles in addition to
moving obstacles, as well as producing trajectories with
less wobbling. The modified algorithm is verified in full-
scale experiments in the Trondheimsfjord, Norway, showing
good performance. The experiments are performed with
virtual static obstacles, while a moving obstacle is detected
and tracked using a radar, not depending on vessel-to-vessel
communication.

The rest of this article is organized as follows: Section 2
presents the BC-MPC algorithm and the modifications done
to it, Section 3 presents the experimental setup and results,
while Section 4 concludes the article and points to possibil-
ities for further work.

2 The BC-MPC algorithm
The BC-MPC algorithm (Eriksen et al., 2019b) is a COLAV
algorithm designed using sample-based MPC, intended for
short-term COLAV for ASVs. Sample-based MPC algo-
rithms are based on computing an objective function over a
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finite discrete search space and selecting the optimized so-
lution, rather than utilizing search algorithms as in gradient-
based algorithms. A benefit of sample-based algorithms is
that they do not have problems with solving highly nonlin-
ear and non-convex problems, which in general is difficult
for gradient-based algorithms. This makes sample-based
algorithms well suited for use in the short-term layer in Fig-
ure 1. Furthermore, the BC-MPC algorithm is designed to
be robust with respect to noisy obstacle estimates, which is
a significant source of disturbance when using exteroceptive
sensors such as radars for detecting and tracking obstacles.
With respect to the COLREGs, the BC-MPC algorithm

complies with rules 8, 13 and 17, and favors maneuvers
following rules 14 and 15. In cases where the algorithm
chooses to ignore the maneuvering aspects of rules 14 and
15, which can be required when rule 17 revokes a stand-
on obligation, the maneuvers have an extended clearance to
obstacles.

At each iteration, the algorithm computes a search space
consisting of a finite number of possible trajectories, which
each contains a sequence of maneuvers. Given this search
space, an objective function is computed on the trajectories,
and the optimized trajectory is selected and used as the
reference to the vessel controllers which control the speed
over ground (SOG) and course. The algorithm is based on
MPC, hence only the first part of the optimized trajectory is
used before a new solution is computed and implemented.

This section presents an overview of the BC-MPC al-
gorithm. Interested readers are referred to Eriksen et al.
(2019b) for more details on the algorithm. In addition, this
section presentsmodifications enabling the algorithm to per-
form static obstacle avoidance and produce trajectories with
less wobbling than the original algorithm.

2.1 Trajectory generation

At each iteration, a new finite search space of possible tra-
jectories is generated. Every trajectory contains a number
of sub-trajectories, each containing one maneuver. This
naturally forms a tree structure, with the nodes represent-
ing vessel configurations and edges representingmaneuvers.
The initial condition is used as the root node, and the depth
of the tree is equal to the number of maneuvers in each tra-
jectory. Notice that it is not possible to guarantee optimality
with this approach, since the search space is non-continuous.
However, with a sufficient number of trajectories, good so-
lutions can be found in an efficient manner even for highly
nonlinear and non-convex problems.

The trajectory generation is performed by a repeatable
maneuver-generation procedure, which when given a vessel
configuration computes a set of sub-trajectories each con-
taining one maneuver. Piecewise linear acceleration profiles
in speed and course serve as a template for the maneuvers.
An example of 5 motion primitives based on the acceler-

U̇

t
TTUTramp TU − Tramp

U̇max

U̇min

(a) Speed acceleration motion primitives
ṙ

t
TTχTramp

ṙmax

ṙmin

2Tramp Tχ − TrampTχ − 2Tramp

(b) Course acceleration motion primitives.

Figure 2: Acceleration motion primitives, where ) is the
step time, )A0<? denotes the ramp time, while
)* and )j are the SOG and course maneu-
ver time lengths, respectively. The symbols
¤*max, ¤*min, ¤Amax and ¤Amin denote the acceleration
limits of the vessel at the initial vessel state. Cour-
tesy of (Eriksen et al., 2019b).

ation profiles in speed and course is shown in Figure 2.
The acceleration profiles are dependent on the step time
length (the maneuver time length) ) > 0, the ramp time
)ramp ∈ (0,min()*2 ,

)j

4 )] and the speed and course maneu-
ver lengths, )* , )j ∈ (0, )], respectively. Given a cur-
rent vessel velocity, the maximum and minimum speed and
course accelerations ¤*max, ¤*min, ¤Amax and ¤Amin are computed
using a vessel model.

To improve the convergence properties of the algorithm,
we employ a guidance function which can modify some of
the trajectories in the search space. This is done by moving
the closest acceleration sample in speed and course to a
desired acceleration generated by the guidance function, if
this is inside the feasible acceleration region.

Desired speed and course trajectories *3 (C) and j3 (C)
are generated by analytically integrating the acceleration
motion primitives. Numerical examples of 5 speed and 5
course trajectories are shown in figures 3 and 4. It should
be noted that these trajectories are intended as reference
trajectories for the vessel controllers, hence they are initiated
in an open-loop fashion with the current desired speed and
course in order to ensure continuous references for the vessel
controllers. The desired speed and course trajectories are
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Figure 3: Example of 5 speed trajectories with ramp time
)ramp = 1 s, and maneuver and step time lengths
)* = ) = 5 s. Acceleration is shown in the
top plot, while speed is shown in the bottom plot.
Courtesy of (Eriksen et al., 2019b).

joined together in a union set of desired velocity trajectories:

U3 = {*3,1 (C),*3,2 (C), . . . ,*3,#*
(C)}

× {j3,1 (C), j3,2 (C), . . . , j3,#j
(C)}, (1)

resulting in a total of #* ·#j desired velocity trajectories
where #* ∈ Z+ and #j ∈ Z+ are the number of speed
and course motion primitives. To include feedback in the
trajectory generation, we use an error model of the vessel
to generate feedback-corrected speed and course trajectories
*̄3 (C) and j̄3 (C), which similarly as in (1) is combined in a
set Ū3 . The feedback-corrected speed and course trajecto-
ries are used to generate feedback-corrected predicted pose
trajectories:

H̄ =
{
(̄(C; *̄ (C), j̄(C))

��(*̄ (C), j̄(C)) ∈ Ū}
, (2)

where (̄(C; *̄ (C), j̄(C)) denotes a kinematic simulation pro-
cedure to obtain the vessel pose.
A full trajectory search space is created by first generating

a set of sub-trajectories by using the maneuver-generation
procedure initialized with the initial vehicle pose. At this
stage, the prediction tree has a depth of one with the ini-
tial vessel pose as the root node and a set of leaf nodes each
reached by onemaneuver. Following this, we append the tra-
jectories with another maneuver by repeating the maneuver-
generation procedure, initialized on each of the leaf nodes,
which increases the depth of the trajectory prediction tree
with one level. This is repeated until the trajectory pre-
diction tree has the desired depth, i.e. each trajectory has
the desired number of maneuvers. This concept is illus-
trated in Figure 5. The acceleration profile parameters and
number of speed and course motion primitives can be level-
dependent, which allows for shaping the maneuvers differ-
ently and avoiding exponential growth with the number of
levels. To reduce the complexity in tuning the algorithm, we
use the same ramp time )ramp and speed and course maneu-
ver lengths )* and )j throughout each level. For a desired
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Figure 4: Example of 5 course trajectories with ramp time
)ramp = 1 s, and maneuver and step time lengths
)j = ) = 5 s. Acceleration is shown in the top
plot, rate in the middle plot and course in the bot-
tom plot. Courtesy of (Eriksen et al., 2019b).

trajectory tree depth � (�maneuvers in each trajectory), this
leaves us with deciding the step time lengths of each level
Z = [)1, )2, . . . , )�], and the number of speed and course
maneuvers at each level T* = [#*,1, #*,2, . . . , #*,�] and
Tj = [#j,1, #j,2, . . . , #j,�].
A set of feedback-corrected predicted pose trajectories

for a trajectory generation with � = 3 levels is shown in
Figure 6. The ramp time is )ramp = 1 s, and the speed and
course maneuver lengths are )* = )j = 5 s. The step time
lengths are Z = [20, 30, 30] s, and the number of speed and
course maneuvers are T* = [1, 1, 1] and Tj = [5, 3, 3].

2.2 Selecting the optimized trajectory
Given a search space of vessel trajectories and a desired
trajectory p3 (C) ∈ R2, we solve an optimization problem
to find the optimized desired velocity trajectory u∗

3
(C) =[

*∗
3
(C) j∗

3
(C)

]> as:

u∗3 (C) = argmin
((̄: (C) ,u3,: (C)) ∈(H̄,U3)

� ((̄: (C), u3,: (C); p3 (C)).

(3)
The objective function is given as:

� ((̄(C), u3 (C); p3 (C)) = Falalign((̄(C); p3 (C))
+ Fav,mavoidm ((̄(C)) + Fav,savoids ((̄(C))
+ Ft,* tran* (u3 (C)) + Ft,jtranj (u3 (C)), (4)

where Fal, Fav,m, Fav,s, Ft,* , Ft,j > 0 are tuning parame-
ters.

The align(·) function assigns a value to following the
desired trajectory p3 (C). The avoidm (·) function assigns a
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Level 0

Level 1

Level 2

Figure 5: Illustration of a trajectory prediction tree with two
levels. The red node is the root node containing
the initial vessel configuration. Other colors group
nodes and edges associated with each maneuver-
generation procedure, which generate three ma-
neuvers each time (given by combinations of #*
and #j satisfying #* ·#j = 3). The tree contains
a total of nine trajectories, each consisting of two
sub-trajectories.

cost to traveling close to moving obstacles, which depends
on the distance to an obstacle for each point on the predicted
trajectories. The maneuvering rules in the COLREGs, rules
13–15, require the vessel to maneuver to starboard in head-
on situations, and recommend to pass behind an obstacle if
the obstacle approaches from the starboard side. Tomotivate
the algorithm to follow these rules, while being free to ignore
the specific maneuvering aspects if required in situations
where the other vessel violates the COLREGs, we use the
obstacle regions in Figure 7 when calculating this cost. The
regions can be interpreted as follows: the margin region is
allowable to enter, the safety region is not desirable to enter,
while the collision region should not be entered. Notice that
the algorithm will require a larger clearance in situations
where the maneuvering rules in the COLREGs are ignored,
e.g. if maneuvering to port in a head-on situation. See
Eriksen et al. (2019b) for more details on the align(·) and
avoidm (·) terms.
In this article, we introduce the avoids (·), tran* (·) and

tranj (·) terms. The avoids (·) term assigns a cost to avoiding
static obstacles, while tran* (·) and tranj (·) are transitional
cost terms increasing the robustness to noise. These terms
will be discussed in detail in the following two sections.

2.3 Static obstacle avoidance

Static obstacles aremodeled using an occupancy grid, which
allows for easy representation of obstacles with arbitrary
shapes like e.g. land and islands. In addition, static obsta-
cles are padded with a decaying gradient to introduce some
smoothness to the static obstacle avoidance function. Given
an occupancy grid $ ( p) ∈ [0, 100] where $ ( p) = 100 and
$ ( p) = 0 represents an occupied and empty cell, respec-
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Figure 6: A set of predicted pose trajectories with three lev-
els. Notice how the guidance function shifts some
of the maneuvers, marked in dark green, to con-
verge towards the desired trajectory, which is a
straight-north trajectory from the initial pose (not
shown in the figure). For illustration purposes, the
trajectories only contain course maneuvers.
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Figure 7: Avoidance cost regions centered at the moving ob-
stacle, each constructed by one circular and three
elliptical segments. The green, yellow and red
regions are named the margin, safety and colli-
sion regions, respectively. The avoidance cost in-
creases linearly with different gradients inside the
green and yellow regions, while the cost is con-
stant inside the red region. The variables 08 , 18
and 28 , 8 ∈ {1, 2, 3} denote the region sizes, where
28 = 18 + 3COLREGs with 3COLREGs controlling the
COLREGs expansion. Courtesy of (Eriksen et al.,
2019b).
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tively, we define the static obstacle term as:

avoids ((̄(C)) =
∫ C0+)

C0

$ ( p̄(W))dW, (5)

where C0 denotes the initial time and (̄(C) =[
p̄(C)> k̄(C)

]>.
2.4 Speed and course transitional costs

In order to improve the robustness to noise on obstacle esti-
mates, transitional cost is included in the objective function,
which penalizes changing the planned trajectory from iter-
ation to iteration. In Eriksen et al. (2019b), a single transi-
tional cost term is used, which introduces a cost if one selects
a different speed and/or course than the one closest to the one
selected in the previous iteration. Note that the trajectory
prediction is based on sampling the possible acceleration
of the vessel in the current iteration, which implies that the
exact trajectory selected in the previous iteration may not
exist in the current search space.
Here, it is proposed to split the transitional cost term

into separate speed and course terms. This motivates the
algorithm to not alter the course if the speed is changed
and vice versa, which would not be the case when using a
single transitional cost term. The transitional cost terms are
defined as:

tran* (u3 (C)) =
{

1,
∫ C0+)1
C0

��*3 (W) −*−3 (W)�� dW > 4*,min

0, else,
(6)

tranj (u3 (C)) =
{

1,
∫ C0+)1
C0

��j3 (W) − j−3 (W)�� dW > 4j,min

0, else,
(7)

with u3 (C) =
[
*3 (C) j3 (C)

]>. The variables *−
3
(C) and

j−
3
(C) denote the current desired velocity trajectory tracked

by the vessel controllers, and )1 is the step time of the first
trajectory maneuver. The variables 4*,min and 4j,min denote
theminimumdifference between the current desired velocity
trajectory and the candidates:

4*,min = min
u3 (C) ∈U3

∫ C0+)1

C0

��*3 (W) −*−3 (W)�� dW
4j,min = min

u3 (C) ∈U3

∫ C0+)1

C0

��j3 (W) − j−3 (W)�� dW. (8)

3 Experimental results

The modified BC-MPC algorithm was tested in full-scale
experiments in the Trondheimsfjord in Norway on the 27th
of September 2018. This section describes the experimental
setup and presents results from the experiments.

Figure 8: The TelemetronASV, owned and operated byMar-
itime Robotics. Courtesy of Maritime Robotics.

Figure 9: The Kongsberg Seatex Ocean Space Drone 2,
which is identical to the Ocean Space Drone 1
(OSD1). Courtesy of Kongsberg Seatex.

3.1 Experimental setup

The experimental setup was similar to the setup reported
in Eriksen et al. (2019b), using the Telemetron ASV from
Maritime Robotics as the ownship and the Ocean Space
Drone 1 (OSD1) from Kongsberg Seatex as the moving ob-
stacle. In addition, virtual static obstacles, expanded with a
padding radius, were used to emulate static obstacles. The
padding radius was selected as 150 m in most of the ex-
periments. Notice that this padding radius only relates to
static obstacles and that safety margins for moving obsta-
cles are enforced by the obstacle regions in Figure 7. The
Telemetron ASV, shown in Figure 8, is a 26-foot high-speed
ASV capable of speeds up to 18 m/s and equipped for both
manned and unmanned operations. The OSD1, shown in
Figure 9, is a modified offshore lifeboat with a length of
12 m, and was steered at a constant speed of 5 knots during
the experiments. The OSD1 played the role of a moving
obstacle in the experiments, and was detected and tracked
using a radar-based tracking system, which is discussed in
detail in Wilthil et al. (2017) and Wilthil (2019). Both
the BC-MPC algorithm and the radar tracking system was
implemented using the Robot Operating System (ROS), and
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Table 1: Telemetron ASV specifications.
Component Description

Vessel hull Polarcirkel Sport 845
Length 8.45 m
Width 2.71 m
Weight 1675 kg

Propulsion system Yamaha 225 HP outboard engine
Motor control Electro-mechanical actuation of

throttle valve
Rudder control Hydraulic actuation of outboard

engine angle with proportional-
derivative (PD) feedback control

Navigation system Kongsberg Seatex Seapath 330+
Radar Simrad Broadband 4GâĎć Radar
Processing platform IntelÂő i7 3.4 GHzCPU, running

Ubuntu 16.04 Linux

was run on a processing platformwith an IntelÂő i7 3.4 GHz
CPU running Ubuntu 16.04 Linux onboard the Telemetron
ASV. See Table 1 for specifications on the Telemetron ASV
and the sensor system.
The BC-MPC algorithm was run at a rate of 0.2 Hz with

the parameters in Table 2. At sea, vessels typically maneu-
ver with large margins, making it safe to run the BC-MPC
algorithm at this rate. Furthermore, the sample time of
the radar is 2.5 s, which together with the dynamics of the
tracking system algorithms results in the closed-loop time
delay being dominated by the obstacle detection and track-
ing system. With the given tuning parameters, the BC-MPC
algorithm has a runtime of approximately 0.4 s (including
interfacing the radar tracking system), allowing for a higher
rate if sensors providing faster updates are available. The
tuning parameters are quite similar to the ones used in the
original algorithm, with the exception of the first step time
length, which is selected as 20 s instead of 5 s in Eriksen
et al. (2019b). With this tuning, the algorithm plans for
making one maneuver of 5 s at the current time and keeping
a constant course until 20 s have passed, rather than plan-
ning to do a new maneuver after only 5 s. This represents a
more “maritime” way to maneuver compared to performing
rapid consecutive maneuvers, and the transitional cost terms
will motivate the algorithm to keep a constant course rather
than selecting a new planned maneuver. Notice, however,
that the algorithm is still free to choose a new maneuver
every 5 s, but the transitional cost terms will favor keeping
constant speed and course. To avoid that the vessel con-
troller limited the performance of the COLAV system, we
used a model-based speed and course controller shown to
have high performance for high-speed ASVs (Eriksen and
Breivik, 2018).

During the experiments, we tested four different scenar-
ios:

1. A static-only scenario with two static obstacles.

Table 2: BC-MPC algorithm parameters.
Parameter Value Description

B 3 Trajectory prediction tree depth
Z [20, 30, 30] s Step time lengths
T* [5, 1, 1] Number of SOG maneuvers
Tj [5, 3, 3] Number of course maneuvers
)ramp 1 s Ramp time
)* 5 s SOG maneuver length
)j 5 s Course maneuver length

Fal 1.5 Align weight
Fav,m 6000 Moving obstacle avoid weight
Fav,s 30 Static obstacle avoid weight
Ft,* 2100 SOG transitional cost weight
Ft,j 1050 Course transitional cost weight

00 50 m Collision region major axis
01 150 m Safety region major axis
02 250 m Margin region major axis
10 25 m Collision region minor axis
11 75 m Safety region minor axis
12 125 m Margin region minor axis
3COLREGs 100 m COLREGs expansion

2. A head-on situation with the OSD1 and four static ob-
stacles.

3. A crossing situation with the OSD1 and one static ob-
stacle.

4. An overtaking situation with the OSD1 and one static
obstacle.

The desired speed of the Telemetron ASV was 5 m/s in
all the scenarios, except the overtaking scenario where the
desired speed was 8 m/s.

3.2 Scenario 1
Scenario 1 is shown in Figure 10. Here, two static ob-
stacles block the desired trajectory, requiring the BC-MPC
algorithm to circumvent the obstacles. This scenario may
seem a bit unrealistic, since the high-level planner and mid-
level COLAV algorithm should plan paths which avoid static
obstacles. However, the BC-MPC algorithm must be able
to avoid static obstacles in order to stay safe in situations
where we deviate from the desired trajectory, e.g. when
avoiding moving obstacles or in situations where the mid-
level algorithm is unable to produce a solution. The ownship
converges to the desired trajectory before avoiding the first
static obstacle by maneuvering to starboard. It would prob-
ably have been better to maneuver to port, since this would
avoid having to pass through the narrow channel between the
first and the second obstacle. The BC-MPC algorithm does,
however, have a limited planning horizon of 80 s with the
current tuning parameters, which makes it unaware of the
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Figure 10: Scenario 1: Static-only scenario. The desired
trajectory intersects with two obstacles, which
the ownship successfully avoids. The blue cir-
cle denotes the initial position, while the num-
bers and asterisks mark each 60 s of the experi-
ment. The yellow patches show the static obsta-
cles, while the dark green contour lines show the
padding regions.

narrow channel when making the decision of maneuvering
to starboard. Subsequently, the ownship converges towards
the desired trajectory and passes the second obstacle by hav-
ing a small distance to the desired trajectory, which resides
slightly inside the padding region of the static obstacle. Af-
ter passing the second obstacle, the ownship converges to
the desired trajectory, before avoiding the first obstacle once
again.

3.3 Scenario 2
Scenario 2 is a head-on situation where the desired trajec-
tory goes through a narrow channel composed by two static
obstacles, and the channel entry is blocked by the OSD1.
In this scenario, the padding distance was selected as 50 m
in order to create the narrow channel between the obsta-
cles. As shown in Figure 11, the ownship avoids the OSD1
by maneuvering to starboard and hence complying with the
COLREGs. Following this turn, the first static obstacle is
passed on the east side. The ownship returns to the desired
trajectory and travels through the channel composed by the
two last static obstacles.

3.4 Scenario 3
Scenario 3, shown in Figure 12, is a crossing situation where
the OSD1 approaches from the ownship’s starboard side, re-

6

5

4

3

2

1

6

5

4

3

2

1

N
o
rt
h
[m

]

East [m]

2600

2800

3000

3200

3400

3600

3800

4000

4200

1500 2000 2500 3000 3500

Figure 11: Scenario 2: Head-on situation. The desired tra-
jectory passes through a narrow channel, which
is blocked by the OSD1. The circles denote the
initial positions, while the numbers and asterisks
mark each 60 s of the experiment. The yellow
patches show the static obstacles, while the dark
green contour lines show the padding regions.

quiring the ownship to give way to avoid collision according
to the COLREGs. In addition, there is a static obstacle
on the starboard side of the ownship, blocking the ownship
from maneuvering to starboard early. In compliance with
the COLREGs, the ownship performs a starboard maneuver
in order to pass behind the OSD1, while passing close to the
boundary of the static obstacle. When the OSD1 has been
passed, the ownship slowly converges towards the desired
trajectory. The reason for the slow convergence is that the
cost that the transitional cost terms introduces is just too
large for the algorithm to change to a trajectory with a faster
convergence. This is sometimes observed, but does not
compromise safety and is a subject of tuning the transitional
cost weights Ft,* and Ft,j.

3.5 Scenario 4

Scenario 4 is an overtaking situation where the ownship
approaches the OSD1 from behind. To allow the vessel
being overtaken to maneuver to starboard if it finds itself
in a separate collision situation, the BC-MPC algorithm
is designed to favor a port turn in overtaking situations.
However, as shown in Figure 13, a static obstacle is blocking
the port side of the obstacle, which makes the ownship pass
the obstacle on its starboard side. As mentioned, the BC-
MPC algorithm is designed to pass with a larger clearance if
passing on the port side rather than the starboard side, which
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Figure 12: Scenario 3: Crossing situation. The desired
trajectory intersects with the OSD1, which ap-
proaches from starboard. The static obstacle
encloses Munkholmen, which is a small island
located in the Trondheimsfjord. The circles de-
note the initial positions, while the numbers and
asterisks mark each 60 s of the experiment. The
yellow patch shows the static obstacle, while the
dark green contour line shows the padding region.

can be seen by comparing this scenario with Experiment 3
in (Eriksen et al., 2019b).

3.6 Experiment summary
The BC-MPC algorithm is able to avoid collisions in all the
scenarios, while converging to the desired trajectory when
it is not obstructed by obstacles. The resulting ownship
trajectories are clear and generally show the intension of the
BC-MPC algorithm. The ownship trajectories are, however,
a bit wobbly when the algorithm traverses alongside static
obstacles. The reason for this behavior is the trajectory
search space consisting of a finite number of trajectories,
of which none may traverse exactly parallel to the static
obstacle. This causes the algorithm sometimes to “zig-zag”
along static obstacles, as seen in Scenario 1. In the usual case
where the mid-level algorithm would recompute a collision-
free trajectory circumventing the obstacles, the BC-MPC
algorithm would however be able to traverse smoothly along
the obstacles by following the desired trajectory. Also, due
to algae growth on the hull, the vessel dynamics had changed
quite a bit since themodel-based vessel controller was tuned,
which also contributed to wobbling in the form of course
overshoots.

As seen in Table 3, the ownship travels inside the padding
region of the static obstacles. This is to be expected, since
the objective function is only sensitive to the static obstacles
when the trajectory resides inside of the padding region.
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Figure 13: Scenario 4: Overtaking situation. The ownship
overtakes the OSD1 by passing on the starboard
side, while avoiding the static obstacle. The cir-
cles denote the initial positions, while the num-
bers and asterisks mark each 60 s of the experi-
ment. The yellow patch shows the static obsta-
cle, while the dark green contour line shows the
padding region.

Table 3: Minimum distance to obstacles. *The padding dis-
tance in Scenario 2 is 50 m.

Scenario
number

Minimum distance
to static obstacles

Minimum distance
to moving obstacle

Scenario 1 130.4 m –
Scenario 2 31.3 m* 167.1 m
Scenario 3 148.6 m 76.1 m
Scenario 4 115.9 m 145.3 m

Hence, the padding region and static avoidance weight Fav,s
should be selected such that a sufficient safety margin is
achieved. A formulationwithmultiple regionswith different
gradients, as for moving obstacles, could make it easier to
tune the algorithm to obtain a desired safety margin to static
obstacles. The required distance to the moving obstacle is a
bit more complex to discuss, since the obstacle regions sizes
depend on the relative bearing. The ownship does, however,
stay outside of the safety region in the head-on and crossing
scenarios (scenarios 2 and 3), while we slightly enter the
safety region in the overtaking scenario (Scenario 4).

4 Conclusion and further work
In this article, we have presented two modifications to the
BC-MPC algorithm for ASV COLAV. The first modifica-
tion allows the algorithm to avoid static obstacles in the
form of an occupancy grid. The second modification con-
cerns improved transitional cost terms by introducing tran-
sitional cost in speed and course separately, motivating the
algorithm to not change the course if the speed is changed
and vice versa. In addition, the algorithm tuning has been
changed in order to obtain more “maritime” maneuvers and
better utilize the transitional cost terms. The modified BC-
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MPC algorithm is tested in full-scale experiments in the
Trondheimsfjord in Norway. A moving obstacle is detected
and tracked using a radar-based system, while virtual static
obstacles are added in the COLAV system. Four different
scenarios were tested in experiments, all of which provided
good results.
In Eriksen et al. (2019a), the authors have used the BC-

MPC algorithm described in this article in a hybrid archi-
tecture, demonstrating COLAV compliant with COLREGs
rules 8 and 13–17 in simulations. In the future, wewould like
to perform an extensive simulation study of the BC-MPC al-
gorithm, in order to analyze the algorithm’s performance in
greater detail.
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