**Page description appears here**

“Online Identification of a Mechanical System in the Frequency Domain with Short-Time DFT”

Authors: Niko Nevaranta, Jukka Parkkinen, Tuomo Lindh, Markku Niemelä, Olli Pyrhönen and Juha Pyrhönen,
Affiliation: Lappeenranta University of Technology
Reference: 2015, Vol 36, No 3, pp. 157-165.

     Valid XHTML 1.0 Strict

Keywords: Kalman filter, Nonparametric estimation, Online identification, Short-time DFT, Two-mass system

Abstract: A proper system identification method is of great importance in the process of acquiring an analytical model that adequately represents the characteristics of the monitored system. While the use of different time-domain online identification techniques has been widely recognized as a powerful approach for system diagnostics, the frequency domain identification techniques have primarily been considered for offline commissioning purposes. This paper addresses issues in the online frequency domain identification of a flexible two-mass mechanical system with varying dynamics, and a particular attention is paid to detect the changes in the system dynamics. An online identification method is presented that is based on a recursive Kalman filter configured to perform like a discrete Fourier transform (DFT) at a selected set of frequencies. The experimental online identification results are compared with the corresponding values obtained from the offline-identified frequency responses. The results show an acceptable agreement and demonstrate the feasibility of the proposed identification method.

PDF PDF (1858 Kb)        DOI: 10.4173/mic.2015.3.3

DOI forward links to this article:
  [1] Niko Nevaranta, Stijn Derammelaere, Jukka Parkkinen, Bram Vervisch, Tuomo Lindh, Kurt Stockman, Markku Niemela, Olli Pyrhonen and Juha Pyrhonen (2016), doi:10.1109/TIE.2016.2574303
  [2] Niko Nevaranta, Stijn Derammelaere, Jukka Parkkinen, Bram Vervisch, Tuomo Lindh, Markku Niemelä and Olli Pyrhönen (2016), doi:10.4173/mic.2016.2.5
  [3] N. Nevaranta, M. Goubej, T. Lindh, M. Niemela and O. Pyrhonen (2016), doi:10.1109/EPE.2016.7695535

[1] Barkley, A. and Santi, E. (2009). Improved online identification of a dc-dc converter and its control loop gain using cross-correlation methods, IEEE Trans. on Power. Elect.. 24(8):2021--2031. doi:10.1109/TPEL.2009.2020588
[2] Beck, H.-P. and Turschner, D. (2001). Commissioning of a state controlled high powered electrical drive using evolutionary algorithms, IEEE/ASME Trans. Mechatronics. 6(2):149--154. doi:10.1109/3516.928729
[3] Beineke, S., Wertz, H., Schutte, F., Grotstollen, H., and Froehleke, N. (1998). Identification of nonlinear two-mass systems for self-commissioning speed control of electrical drives, in Proc. IEEE IECON. pages 2251--2256. doi:10.1109/IECON.1998.724071
[4] Bitmead, R., Tsoi, A.C., and Parker, P.J. (1986). A kalman filtering approach to short-time fourier analysis, IEEE Trans. Acoust., Speech, Signal Process. 34(6):1493--1501. doi:10.1109/TASSP.1986.1164989
[5] Calvini, M., Carpita, M., Formentini, A., and Marchesoni, M. (2015). Pso-based self-commissioning of electrical motor drives, IEEE Trans. Ind. Electron. 62(2):768--776. doi:10.1109/TIE.2014.2349478
[6] Garrido, R. and Concha, A. (2013). An algebraic recursive method for parameter identification of a servo model, IEEE/ASME Trans. Mechatronics. 18(5):1572--1580. doi:10.1109/TMECH.2012.2208197
[7] Garrido, R. and Concha, A. (2014). Inertia and friction estimation of a velocity-controlled servo using position measurements, IEEE Trans. Ind. Electron.. 61(9):4759--4770. doi:10.1109/TIE.2013.2293692
[8] Jenssen, A. and Zarrop, M. (1994). Frequency domain change detection in closed loop, in Proc. Int. Conf. in Control. pages 676--680. doi:10.1049/cp:19940213
[9] Kamwa, I., Samantaray, S.R., and Joos, G. (2014). Wide frequency range adaptive phasor and frequency pmu algorithms, IEEE Trans. Smart Grid.. 5(2):569--579. doi:10.1109/TSG.2013.2264536
[10] Kurita, Y., Hashimoto, T., and Ishida, Y. (1999). An application of time delay estimation by anns to frequency domain i-pd controller, in Proc. Int. Joint Conf. on Neural Networks. pages 2164--2167. doi:10.1109/IJCNN.1999.832723
[11] LaMaire, R., Valavani, L., Athans, M., and Gunter, S. (1987). A frequency-domain estimator for use in adaptive control systems, in Proc. American Control Conf.. pages 238--244.
[12] Morelli, E.A. (2000). Real-time parameter estimation in frequency domain, Jour. of Guidance, Contr. and Dynamics. 23(5):812--818.
[13] Nevaranta, N., Niemelae, M., Lindh, T., Pyrhoenen, O., and Pyrhoenen, J. (2013). Position controller tuning of an intermittent web transport system using off-line identification, in Proc. EPE. pages 1--9. doi:10.1109/EPE.2013.6631785
[14] Nevaranta, N., Parkkinen, J., Niemelae, M., Lindh, T., Pyrhoenen, O., and Pyrhoenen, J. (2015). Online estimation of linear tooth-belt drive system parameters, IEEE Trans. Ind. Electron. 0(0):1--10. doi:10.1109/TIE.2015.2432103
[15] Ruderman, M. (2014). Tracking control of motor drives using feedforward friction observer, IEEE Trans. Ind. Electron. 61(7):3727--3735. doi:10.1109/TIE.2013.2264786
[16] Saarakkala, S. and Hinkkanen, M. (2013). Identification of two-mass mechanical systems in closed-loop speed control, in Proc. IEEE IECON. pages 2905--2910. doi:10.1109/IECON.2013.6699592
[17] San-Millan, A. and Feliu, V. (2015). A fast online estimator of the two main vibration modes of flexible structures from biased and noisy measurements, IEEE/ASME Trans. Mechatronics. 20(1):93--104. doi:10.1109/TMECH.2014.2304302
[18] Toth, R., Laurain, V., Gilson, M., and Garnier, H. (2012). Instrumental variable scheme for closed-loop lpv model identification, Automatica. 48(9):2314--2320. doi:10.1016/j.automatica.2012.06.037
[19] Villwock, S. and Pacas, M. (2008). Application of the welch-method for the identification of two- and three-mass-systems, IEEE Trans. Ind. Electron. 55(1):457--466. doi:10.1109/TIE.2007.909753
[20] Vinnicombe, G. (1993). Frequency domain uncertainty and the graph topology, IEEE Trans. Automatic Cont.. 38(9):1371--1383. doi:10.1109/9.237648
[21] Wang, Z., Zou, Q., Faidley, L., and Kim, G.Y. (2011). Dynamics compensation and rapid resonance identification in ultrasonic-vibration-assisted microforming system using magnetostrictive actuator, IEEE/ASME Trans. Mechatronics. 16(3):489--497. doi:10.1109/TMECH.2011.2116032

  title={{Online Identification of a Mechanical System in the Frequency Domain with Short-Time DFT}},
  author={Nevaranta, Niko and Parkkinen, Jukka and Lindh, Tuomo and Niemelä, Markku and Pyrhönen, Olli and Pyrhönen, Juha},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.