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Abstract

A proper system identification method is of great importance in the process of acquiring an analytical
model that adequately represents the characteristics of the monitored system. While the use of different
time-domain online identification techniques has been widely recognized as a powerful approach for system
diagnostics, the frequency domain identification techniques have primarily been considered for offline
commissioning purposes. This paper addresses issues in the online frequency domain identification of a
flexible two-mass mechanical system with varying dynamics, and a particular attention is paid to detect
the changes in the system dynamics. An online identification method is presented that is based on a
recursive Kalman filter configured to perform like a discrete Fourier transform (DFT) at a selected set
of frequencies. The experimental online identification results are compared with the corresponding values
obtained from the offline-identified frequency responses. The results show an acceptable agreement and
demonstrate the feasibility of the proposed identification method.

Keywords: Kalman filter, Nonparametric estimation, Online identification, Short-time DFT, Two-mass
system

1 Introduction

The identification of a mechanical system in electric
drives has become an increasingly important feature in
different high-performance motion control applications
such as robotics, machine tools, material handling, and
packaging, to name but a few. As the control perfor-
mance plays an important role in these applications,
the increasing demand for high reliability significantly
motivates to improve the methods, tools, and tech-
niques for the diagnostics and condition monitoring of
a mechanical system. The deterioration of mechan-
ical parts over time or other unexpected changes in
the system dynamics may lead to degradation of the
control performance. These adverse effects can cause
unexpected interruptions to the production processes,
for example, in material handling. Thus, it is impor-
tant to detect the system changes as proactive main-

tenance before they lead to performance degradation,
which could eventually lead to production losses. For
these reasons, different system identification techniques
for the condition monitoring of mechanical parts are
viable methods to enhance the reliability of electrical
drives.

In the literature there are numerous papers describ-
ing identification techniques for different mechanical
systems. In general, a mechanical system can be iden-
tified either in the offline or in online mode by time-
or frequency-domain observations. Broadly speaking,
traditional identification techniques can be divided into
two main categories: nonparametric estimation meth-
ods (Villwock and Pacas, 2008), (Wang et al., 2011),
(Ruderman, 2014) and parametric estimation methods
(Saarakkala and Hinkkanen, 2013). For commission-
ing purposes, frequency-domain offline identification
techniques are widely recognized, and they have been
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successfully applied to parameter estimation of differ-
ent mechanical systems in closed-loop control (Beineke
et al., 1998), (Beck and Turschner, 2001). Corre-
spondingly, other studies have considered the closed-
loop time-domain identification of mechanical systems
for parameter estimation and control design purposes
(Saarakkala and Hinkkanen, 2013), (Nevaranta et al.,
2013), (Calvini et al., 2015). Especially, recent ad-
vances in time-domain prediction error approaches
(Toth et al., 2012) have mitigated the closed-loop is-
sues. Some of these methods have been successfully
applied to online parameter estimation by considering
their recursive form (Nevaranta et al., 2015), (Garrido
and Concha, 2013). For online identification purposes,
recursive time-domain parameter estimation methods
have received the most attention as they have been
shown to overcome many of the drawbacks of classical
frequency-domain techniques in terms of closed-loop is-
sues, accuracy, computational cost, and memory stor-
age requirements.

Despite the above theoretical development, there are
hardly any studies available on the issues related to
the use of frequency-domain techniques for online sys-
tem identification. As the computational capacity has
increased, the real-time frequency domain techniques
could introduce attractive features for example for the
online monitoring of a mechanical system at a selected
set of frequencies. In (Morelli, 2000), a real-time equa-
tion error method based on finite Fourier transform in
the frequency domain is used for linear model iden-
tification. Another approach has been reported in
(Jenssen and Zarrop, 1994), where a recursive Kalman
filter is configured to perform like a Fourier transform
(Bitmead et al., 1986). These methods are regarded as
a short-time discrete Fourier transform. In (LaMaire
et al., 1987), (Kurita et al., 1999) adaptive frequency
domain online identification based control law have
been proposed. Furthermore, other frequency domain
identification methods used in real-time have been re-
ported in (Barkley and Santi, 2009). However, these
methods have high memory storage requirements for
data acquisition (Kurita et al., 1999) or take an itera-
tive form (Barkley and Santi, 2009).

Even though several studies have applied different
online and offline methods to identify the dynamics of
the mechanical parts, to the authors knowledge, none
of the previous studies have discussed or considered
online identification of a mechanical system in the fre-
quency domain. In practice, the advantages of fre-
quency domain techniques based on a Fourier trans-
form are that the bias and drift are removed from the
measured data. Secondly, by using a priori knowledge
of the expected frequency range, that is, a selected set
of frequencies of the excitation signal, the data to be

analyzed can be easily reduced. Motivated by the fea-
tures of the short-time DFT algorithm in (Jenssen and
Zarrop, 1994), (Bitmead et al., 1986), (Kamwa et al.,
2014), the objective of this paper is to study online non-
parametric identification of the frequency response in
selected frequency points and monitoring of a velocity-
controlled two-mass-system in a closed-loop control. In
particular, the main idea of using the short-time DFT
for identification purposes presented in (Jenssen and
Zarrop, 1994) is considered, but here the theory is sup-
ported by measurement results, and the identification
is carried out in a different manner. The direct identi-
fication is considered by using the measured input and
output signals.

This paper studies an example case of the frequency-
domain online identification of a two-mass-system. The
system under study is a coupled belt system with me-
chanical dynamics consisting of two moments of in-
ertias coupled by flexible belt material. The online
identification is performed by exciting the system with
a multi-sine excitation signal and using a short-time
DFT. In the approach, nonparametric identification is
performed at a selected set of frequencies that are cho-
sen from the offline-identified frequency response and
prior knowledge of the system dynamics. For valida-
tion purposes, the system dynamics of the experimen-
tal test setup is varied by changing the belt material in
the system. Furthermore, the normalized Vinnicombe
gap metric is used as an illustrative distance metric in
order to compare offline- and online-identified models
in the desired frequency range when the system has
been modified.

The contents of the paper are organized as follows.
First, a mathematical model of the flexible belt sys-
tem under consideration is developed and introduced
in Section 2. After that, the online identification pro-
cedure for the mechanical system under study is in-
troduced in Section 3. Finally, the experimental test
setup is presented and identification results are shown
and analyzed in Section 4. Section 5 concludes the
paper.

2 Model of the Two-mass-system

The investigated two-mass-system is a coupled belt sys-
tem with mechanical dynamics consisting of two mo-
ments of inertias coupled by flexible belt material as
depicted in Figure 1. The dynamics of the mechanical
system in Figure 1 can be described by the following
set of equations

J1
dΩ1

dt
= T1 − Tfr1 + r1F (1)
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Figure 1: Flexible two-mass-system

J2
dΩ2

dt
= T2 − Tfr2 − r2F (2)

F = K(r2Ω2 − r1Ω1) +D(r2Ω̇2 − r1Ω̇1) (3)

Equations (1) and (2) are the elementary dynamic
equations for rotation, where J is the moment of in-
ertia, is the angular velocity, T is the torque, Tfr is
the frictional torque component, r is the roller radius,
and F represents the tension force. The dynamics of
the coupling is expressed by (3), where K is the spring
constant and D is the damping constant of the belt
material. In this paper, the dynamics of the two-mass-
system is modified in order to show the applicability
of the proposed identification method. The reference
models for the system under study are calculated from
the material properties and the geometrical values pre-
sented in Table 1. The reference models are used to
compare the experimentally identified models. It is
pointed out that the original parameters of the exper-
imental test setup, especially the belt properties, are
only known with some degree of confidence.

3 Short-Time DFT

The standard method for spectrum analysis is the dis-
crete Fourier transform, which, in practice, requires an
N array of samples. For real-time implementation, a
recursive Kalman filter can be configured to perform
like a Fourier transform (Bitmead et al., 1986). Thus,
the short-time DFT can be obtained by using the fol-
lowing simplified state-space representation

x(k + 1) = Ax(k) (4)

y(k) = C
T
x(k)

where the matrices A and C
T

for the nth frequency
component ωn are written as

An =

1 0 0
0 cos(Tsωn) sin(Tsωn)
0 − sin(Tsωn) cos(Tsωn)

 (5)

Cn =
[
1 1 0

]
(6)

Table 1: Parameters of reference systems

Parameters Ref. system A Ref. system B

K[N/m] 5.75·104 3.10·104
D[Ns/m] 100 90
J1[kgm

2] 0.032 0.032
J2[kgm

2] 0.032 0.032
fres[Hz] 15.1 11.1

where Ts is the sample time. Thus, the state vector
consists of the DC offset and the real and imaginary
components of the signal at the frequency ωn, and it is
described byxdc(k + 1)
xre(k + 1)
xim(k + 1)

=
1 0 0

0 cos(Tsωn) sin(Tsωn)
0 − sin(Tsωn) cos(Tsωn)

xdc(k)
xre(k)
xim(k)

(7)

The equation for the output is given as

y(k) =
[
1 1 0

] xdc(k)
xre(k)
xim(k)

 (8)

The second and third element of the state vector x(k)
consist of a frequency component and its derivative.
Thus, the output y(k) formed from the real part of the
signal components. The Kalman filter solution for the
state estimation problem can be written as

x̂(k + 1) = Ax̂(k) + K(k)(y(k)−C
T
x̂(k)) (9)

where y(k) is the measured signal and the Kalman gain
K(k)

K(k) =
AP(k)C

T

C
T
P(k)C + r

(10)

where r represents variance in the measurement. The
covariance matrix P(k) is calculated as

P(k) = AP(k − 1)

[
I +

CC
T
P(k − 1)

C
T
P(k − 1)C + r

]
A

T
(11)

As the covariance matrix is updated, the optimal gain
has a time-varying nature. For practical purposes, fix-
ing the covariance matrix at P = εI gives the steady-
state values of the Kalman gain vector, which can be
calculated offline as

K(k) =
AC

C
T
C + r

ε

(12)

This expression gives a filter expression that is a fixed
coefficient state observer with predetermined stability
characteristics (Kamwa et al., 2014). Furthermore, this
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form gives a simple tuning rule for the gain: the gain
only depends on the ratio r/ε as the known matrices A
and C are calculated beforehand. Thus, the choice of
ε directly influences the tracking and error covariance;
for instance, a small value gives slow tracking and a
small error covariance. The ratio of r and ε is defined
as

λ =
r

ε
(13)

This form provides an opportunity to use only one tun-
ing parameter λ in the filter design. The state-space
realization can be modified so that more than one fre-
quency component can be considered at the same time
by using the block-diagonal representation

A =


A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 An

 (14)

and correspondingly, the output matrix has the form

C
T

=
[
1 0 1 0 · · · 1 0

]
(15)

As the signal is in a complex form, the amplitude of
the nth component can be calculated by

|x(n)| =
√
x
(n)
re + x

(n)
im (16)

3.1 Estimating with Short-time DFT

In order to show the tracking properties and the influ-
ence of the tuning parameters of the Kalman filter, the
following signal is considered as an example

y(t) = 2 + 1.3 sin(30πt) + 1.7 sin(80πt) + e(t) (17)

where e(t) is the disturbance in the signal that con-
sists of a Gaussian noise part and three sine compo-
nents with frequencies [26, 54, 72]π. The amplitude
for the disturbance is set to 0.25. The Kalman filter is
tuned to track frequencies ω1-7 = [20, 24, 30, 36, 60,
70, 80]π that include both the sine components of the
signal (17) and the other components close to the dis-
turbance frequencies. Figure 2 a) shows the estimated
amplitudes for the frequencies ω1-7. Moreover, Fig-
ure 2 b) depicts the tracking properties in the case of a
second sine component of (17) when the tuning param-
eter λ is varied. It can be noticed in Figure 2 a) that
the amplitudes of the desired frequency components of
(17) are estimated correctly under disturbances. Fur-
thermore, the amplitudes of the other frequencies con-
sidered in the Kalman filter design as well as in e(t) are
estimated near zero. In Figure 2 b), the effect of the
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Figure 2: a) Estimated amplitudes of the signal (λ =
100) and b) tracking properties when the
tuning parameter λ is varied.

tuning parameter λ is clear: when λ increases, the er-
ror in the estimate increases, but the tracking is faster.
These results show that the desired frequency compo-
nents can be tracked by the proposed method.

4 Experimental Results

In the experimental evaluation, a mechanical system
consisting of two nip rollers coupled by a flexible belt
is considered. Both of the rollers are directly coupled
to BSM100N-2250AD permanent magnet synchronous
motors manufactured by Baldor. The motors are con-
trolled with high-performance ABB ACSM1 frequency
converters. The velocity feedback signals are measured
using high-resolution absolute encoders. An AC500
programmable logic controller (PLC) by ABB is used
to implement the process controllers and the excita-
tion signals. The experimental test setup is illustrated
in Figure 3.

4.1 Offline Identification

In this paper, the offline identification is considered for
two specific purposes. Firstly, based on the offline iden-
tification results, the desired set of frequency points to
be monitored by the online method are selected, and
thus, the frequency contents of the excitation signal are
obtained. Secondly, the dynamics of the experimental
system is identified in order to have a more realistic
model for comparison.

The experimental offline identification tests are car-
ried out in the nominal operation point of the system
at a velocity of 10rad/s when the belt tension was set
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Figure 3: a) Experimental system applied in the labo-
ratory measurements. Both of the rollers are
driven by Baldor BSM100N-2250AD perma-
nent magnet synchronous motors and con-
trolled by ABB ACSM1 frequency converters
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Figure 4: a) Offline-identified phase and magnitude
response compared with the mathematical
model (reference model A). The red dots are
the selected frequencies to be monitored by
the proposed online method.

to 50 N. The identification of the controlled system is
carried out so that the system dynamics is excited with
a pseudo random binary signal (PRBS) with 7-register
and amplitude changes between the values -2.3 Nm and
2.3 Nm. The velocity is controlled by a closed-loop
PI control, and the excitation signal is added to the
output of the controller. By using a low-bandwidth
controller, the system dynamics can be identified with-
out losing principal information (Villwock and Pacas,
2008), (Garrido and Concha, 2013), (Garrido and Con-
cha, 2014). In Figure 4, the experimentally identified
phase and magnitude responses are compared with the
frequency response of reference model A of Table 1.
The offline-estimated nonparametric model is in a sat-
isfactory agreement with the reference two-mass model.
Even though there are small discrepancies between

the models, the characteristics of the two-mass-system
are evident in the measured phase and magnitude re-
sponses. It is pointed out that the direct comparison of
the offline-identified model with the reference model of
the mechanical system is difficult as the original param-
eters are only known with some degree of confidence.
Nevertheless, the identification result is in a satisfac-
tory agreement with the mathematical model.

As stated above, for online identification purposes,
the monitoring of the mechanical system at a selected
set of frequencies is a desirable feature. Based on the a
priori assumption of the system dynamics and the of-
fline identification result, the selected frequency points
to be monitored are illustrated by red dots in Figure 4.
The selected set includes eight frequency components
close to the resonance frequency from 2.9 Hz to 23.9
Hz with a frequency resolution of 3Hz.

4.2 Estimation of Measured Output

Periodic signals are considered in this paper with Np

samples in the period, and in particular, with a random
phase multisine signal, which can be written as

ru(t) =

Nf∑
n=1

Ak cos(2πfkt+ φk) (18)

where Nf is the number of frequencies, Ak are the am-
plitudes of each frequency component, fk are the fre-

quencies chosen from the grid 2πl
Np

,l=1,...,
Np

2 -1 and ran-

dom phases uniformly at an interval between 0 and 2π.
The signal contains frequencies in the frequency range
of 2.9 to 23.9 Hz with the frequency resolution of 3 Hz,
and the amplitudes are chosen as one. The frequency
response is only estimated at the excited frequencies.
Figure 5 e) shows an example of a multisine signal am-
plitude in the frequency domain.

In order to illustrate the short-time DFT for online
identification, the system is first excited with a dif-
ferent multisine excitation signal as illustrated in Fig-
ure 5. As the output of the Kalman filter is formed
from the estimated states (8), it represents an estima-
tion of the measured signal y(k) calculated from the
DC offset and real components. Similar type of an
estimation problem for identifying the amplitudes of
a harmonic signal has been considered in (San-Millan
and Feliu, 2015). In this paper, the estimation proper-
ties of the Kalman filter are considered in the case of
measured velocity. It is worth mentioning that the am-
plitude of the excitation signal has been intentionally
set high for illustrative purposes. In Figure 5 a)-d),
the measured velocity is compared with the estimated
output. The excitation signal contains different fre-
quencies as depicted in Figure 5 e). In Figure 5 a),
the system is excited with an excitation signal with
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Figure 5: Estimated velocity compared with the mea-
sured velocity. a) The system is excited with
f1, b) with f1 and f2, c) with f1-f4, and d)
with f1-f8. e) The frequency contents of the
multisine signal with a frequency range of 2.9
Hz to 23.9 Hz with a frequency resolution of
3Hz.

only one frequency f1, in Figure 5 b) with two frequen-
cies f1 and f2, Figure 5 c) with four frequencies f1-f4,
and in Figure 5 d) with eight frequencies f1-f8.

It can be seen in Figure 5 that the estimated sig-
nals are in a satisfactory agreement with the measured
signal. Especially, in the cases a)-c), there are only
slight discrepancies between the signals caused by the
noise in the measurement and the small eccentricity of
the roller. In Figure 5 d), the largest estimation error
can be detected in the case when the excitation signal
contains more frequencies; nevertheless, the estimated
signal behavior agrees well with the measured one. As
a conclusion, the excited frequencies can be clearly ob-
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Figure 6: Scheme of the closed-loop identification.

served with the Kalman filter, thus indicating that the
short-time DFT can be obtained.

4.3 Online Identification

First, the experimental test setup with reference pa-
rameters A (see Table 1) is considered. The system is
excited with a multisine signal as depicted in Figure 5
e). The velocity is controlled with a low bandwidth PI
controller, and the online estimation is performed di-
rectly by using the measured input u(k) and the output
signals y(k) by Kalman filters as illustrated in Figure 6.
The tuning parameter of the Kalman gain is chosen as
λ = 100. It is pointed out that the effect of the feed-
back controller is now omitted as a low-bandwidth con-
troller is used. By using (16), the amplitudes of the de-
sired frequencies can be calculated. Thus, the ratio of
the output magnitudes to the input magnitudes can be
used for the estimation of the frequency response at the
excited frequencies. In Figure 7, the online-estimated
frequency response points are compared with the fre-
quency responses of the offline-identified model and the
reference model. Although there are slight differences
between the reference frequency response and the esti-
mated frequency points, the form of the resonance fre-
quency can be clearly seen from the online estimated
result. However, the online estimation result shows
similar behavior as the offline-identified frequency re-
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sponse, as it was expected. Moreover, we can see that
the frequency component f7 has the largest error com-
pared with the reference and offline-identified models.
However, these results are not directly comparable be-
cause of the fundamental difference between the exci-
tation signals and the estimation methods. Neverthe-
less, the online estimation result is in a good agreement
with the offline-identified model. Evidently, the online-
identified nonparametric models in different frequency
points describe the system behavior and validate the
accuracy of the proposed estimation method.

4.4 Changes in the System Dynamics

The results in Figure 7 show that the dynamics of the
two-mass system in the chosen frequency points can be
identified directly by using Kalman filters that perform
like a Fourier transform. In order to further verify the
online method, the system dynamics of the experimen-
tal test setup is varied by changing the belt material
between the rollers. Thus, in this paper, the modi-
fied system is regarded as reference system B with a
different resonance frequency (see Table 1). In Fig-
ure 8, the online-estimated frequency points of both
systems are compared with the offline-identified fre-
quency responses. It can be observed in Figure 8 that
the dynamics of the system has changed. Even though
the change is small, it is enough to demonstrate that
the resonance of the system has changed, which can
be clearly noticed from the offline-identified frequency
responses. More importantly, the same change can
also be observed from the online-estimated frequency
points. Especially, the change can be seen from the fre-
quency points f3 and f4 that are close to the resonance
and antiresonance frequencies of both systems. Fur-
thermore, it can be noticed that the online-identified
frequency component f7 has the largest error compared
with the offline-identified model in both magnitude re-
sponse results. Moreover, the online-identified phase
responses show more error compared with the offline-
identified ones. Nevertheless, the online-identified re-
sults are in a satisfactory agreement with the offline-
identified ones, thereby indicating that the short-time
DFT can be applied to online identification. The char-
acteristics of the two-mass system are evident in the
online-identified amplitude and phase responses.

4.5 Distance Between the Identified
Models

Typically, in order to measure the distance between
the transfer function models of linear time invariant
(LTI) systems, different gap metrics are used. The
Vinnicombe metric (v-gap metric) between two plants
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GA(jω)and GB(jω) is defined by (Vinnicombe, 1993)

Ψ [GA, GB]=
|GA(jω)−GB(jω)|

(1 + |GA(jω)2|)
1
2(1 + |GB(jω)2|)

1
2

(19)

The v-gap distance is determined as

δv (GA, GB) = ||GA(jω), GB(jω)| |∞ (20)

for the frequencies 0≤ ω ≤ πfs with the normalized lim-
its 0 ≤ δv < 1. In other words, a frequency-based com-
parison of two systems can be obtained. By considering
a known controller C(jω) and a system model G(jω), a
complementary sensitivity function can be written

T (jω) =
G(jω)C(jω)

1 +G(jω)C(jω)
(21)
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In general, the v-gap metric can be used to compare
the stability conditions of a controller designed for a
certain plant against a set of system models. However,
in this paper, the v-gap metric is only used as an il-
lustrative distance metric in order to compare offline-
and online-identified models when the system has been
changed. The solid black line in Figure 9 illustrates the
frequency-based v-gap of the of system models that
are built from the known controller and the offline-
identified model (21). It can be seen in Figure 9 that
the change in the distance between the systems is no-
ticeable as the gap of the systems is higher in the fre-
quency region near the resonances. Furthermore, it
can be noticed that the frequency region after the res-
onance has a small gap between the systems. In prac-
tice, this shows that there is uncertainty in the iden-
tification. Thus, in the case of parametric identifica-
tion of two-mass system dynamics, this would corre-
spond to an error in the inertial parameters. Never-
theless, the distance metric clearly shows the system
changes when the resonance of the system is varied.
The online frequency domain identification yields non-
parametric models in the form of G(jωn) at a selected
set of frequencies, thereby leading to an option to mon-
itor system changes in the desired frequency points.
In Figure 9, the same distance metrics have been cal-
culated for the online-identified nonparametric models
similarly as in the case of the offline-identified ones.
It can be observed in Figure 9 that the distance cal-
culated by using online-identified frequency points in-
dicates the same change in the dynamics as the of-
fline result. More importantly, even though the online-
identified frequency response in Figure 8 shows some
error in different points, the distance of these points
in Figure 9 is in a good agreement. Moreover, the ad-
vantage of the online frequency domain identification
is the nonparametric model form that can be used,
without loss of generality, to monitor changes in de-
sired frequency points rather than within the whole
frequency range. However, the Vinnicombe gap can be
problematic distance metric, especially when consider-
ing robust controller design for system with resonances,
because large distance is easily formed from the differ-
ences in the resonances. On the other hand, using the
gap-metric as an online change indicator in interesting
frequency points such as -3 dB closed-loop bandwidth
point could lead to possibility of monitor changes of
control performance.

5 Conclusions

In this paper, an online nonparametric frequency do-
main identification method has been presented that can
be used to monitor a mechanical system at a selected

set of frequencies. It is based on a Kalman filter that
performs like a Fourier transform. By using the a priori
knowledge of the expected frequency range, the filter
can be tuned in advance to track the desired frequency
components. The method was verified by experimental
measurements, which confirmed the applicability of the
proposed method. The results were validated by com-
paring the offline-identified frequency response and the
online-identified frequency points. Furthermore, the
experimental test setup was changed to further ver-
ify the method with different resonances. The results
show acceptable agreement, thus indicating that the
proposed method is suitable for the online frequency
domain nonparametric identification of a mechanical
system. The future work will focus on the closed-loop
identification with special reference to the influence of
the controller and noise on the estimation result. More-
over, by considering the adaptive form in the proposed
Kalman filter, the identification could be carried out
with different excitation signals for instance with a sine
sweep, thereby providing the opportunity to use a sim-
ple state-space form for one frequency component.
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