**Page description appears here**

“On Implementation of the Preisach Model: Identification and Inversion for Hysteresis Compensation”

Authors: Jon Åge Stakvik, Michael R.P. Ragazzon, Arnfinn A. Eielsen and Jan T. Gravdahl,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2015, Vol 36, No 3, pp. 133-142.

     Valid XHTML 1.0 Strict


Keywords: Hysteresis, Preisach, Identification, Inversion

Abstract: A challenge for precise positioning in nanopositioning using smart materials is hysteresis, limiting positioning accuracy. The Preisach model, based on the delayed relay operator for hysteresis modelling, is introduced. The model is identified from experimental data with an input function ensuring information for all input levels. This paper presents implementational issues with respect to hysteresis compensation using the Preisach model, showing the procedure to follow, avoiding pitfalls in both identification and inversion. Issues due to the discrete nature of the Preisach model are discussed, and a specific linear interpolation method is tested experimentally, showing effective avoidance of excitation of vibrational dynamics in the smart material. Experimental results of hysteresis compensation are presented, showing an approximate error of 5% between the reference and measured displacement. Consequences of an insufficient discretization level and a high frequency reference signal are illustrated, showing significant deterioration of the hysteresis compensation performance.

PDF PDF (1322 Kb)        DOI: 10.4173/mic.2015.3.1



DOI forward links to this article:
  [1] Michael R.P. Ragazzon, Marialena Vagia and J. Tommy Gravdahl (2016), doi:10.1016/j.ifacol.2016.10.667
  [2] Mehdi Jokar, Moosa Ayati, Aghil Yousefi-Koma and Hamid Basaeri (2017), doi:10.1177/1045389X17698589


References:
[1] AlJanaideh, M., Rakheja, S., and Su, C.-Y. (2011). An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control, IEEE/ASME Transactions on Mechatronics. 16(4):734--744. doi:10.1109/TMECH.2010.2052366
[2] Croft, D., Shed, G., and Devasia, S. (2001). Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 123(1):35--43. doi:10.1115/1.1341197
[3] Devasia, S., Eleftheriou, E., and Moheimani, S. (2007). A survey of control issues in nanopositioning, IEEE Transactions on Control Systems Technology. 15:802--823. doi:10.1109/TCST.2007.903345
[4] Eielsen, A.A. (2012). Topics in Control of Nanopositioning Devices, Ph.D. thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics.
[5] Eielsen, A.A., Gravdahl, J.T., and Pettersen, K.Y. (2012). Adaptive feed-forward hysteresis compensation for piezoelectric actuators, Review of Scientific Instruments. 83(8). doi:10.1063/1.4739923
[6] Esbrook, A., Tan, X., and Khalil, H. (2013). Control of systems with hysteresis via servocompensation and its application to nanopositioning, IEEE Transactions on Control Systems Technology. 21(3):725--738. doi:10.1109/TCST.2012.2192734
[7] Galinaitis, W., Joseph, D., and Rogers, R. (2001). Parameter identification for preisach operators with singular measures, Physica B: Condensed Matter. 306(1-4):149--154. doi:10.1016/S0921-4526(01)00995-4
[8] Hughes, D. and Wen, J. (1997). Preisach modeling of piezoceramic and shape memory alloy hysteresis, Smart Materials and Structures. 6(3):287--300. doi:10.1088/0964-1726/6/3/007
[9] Ismail, M., Ikhouane, F., and Rodellar, J. (2009). The hysteresis Bouc-Wen model, a survey, Archives of Computational Methods in Engineering. 16(2):161--188. doi:10.1007/s11831-009-9031-8
[10] Iyer, R. and Shirley, M. (2004). Hysteresis parameter identification with limited experimental data, IEEE Transactions on Magnetics. 40(5):3227--3239. doi:10.1109/TMAG.2004.833427
[11] Iyer, R. and Tan, X. (2009). Control of hysteretic systems through inverse compensation, Control Systems, IEEE. 29(1):83--99. doi:10.1109/MCS.2008.930924
[12] Iyer, R., Tan, X., and Krishnaprasad, P. (2005). Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators, IEEE Transactions on Automatic Control. 50(6):798--810. doi:10.1109/TAC.2005.849205
[13] Jiles, D. and Atherton, D. (1986). Theory of ferromagnetic hysteresis, Journal of Magnetism and Magnetic Materials. 61(1-2):48--60. doi:10.1016/0304-8853(86)90066-1
[14] Kuhnen, K. (2003). Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach, European Journal of Control. 9(4):407--418. doi:10.3166/ejc.9.407-418
[15] Leang, K. and Devasia, S. (2006). Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes, Mechatronics. 16(3-4):141--158. doi:10.1016/j.mechatronics.2005.11.006
[16] Macki, J.W., Nistri, P., and Zecca, P. (1993). Mathematical models for hysteresis, SIAM Review. 35(1):94--123. doi:10.1137/1035005
[17] Mayergoyz, I. (2003). Mathematical Models of Hysteresis and their Applications, Academic Press.
[18] Moheimani, S. and Goodwin, G.C. (2001). Guest editorial introduction to the special issue on dynamics and control of smart structures, Control Systems Technology, IEEE Transactions on. 9(1):3--4. doi:10.1109/TCST.2001.896740
[19] Ragazzon, M. R.P., Eielsen, A.A., and Gravdahl, J.T. (2014). Hinf reduced order control for nanopositioning: Numerical implementability, In 19th World Congress of the International Federation of Automatic Control. Cape Town, South Africa, pages 6862--6869. doi:10.3182/20140824-6-ZA-1003.00501
[20] Riccardi, L., Naso, D., Janocha, H., and Turchiano, B. (2012). A precise positioning actuator based on feedback-controlled magnetic shape memory alloys, Mechatronics. 22(5):568--576. doi:10.1016/j.mechatronics.2011.12.004
[21] Rosenbaum, S., Ruderman, M., Ströhla, T., and Bertram, T. (2010). Use of Jiles-Atherton and Preisach hysteresis models for inverse feed-forward control, IEEE Transactions on Magnetics. 46(12):3984--3989. doi:10.1109/TMAG.2010.2071391
[22] Stakvik, J.Aa. (2014). Identification, Inversion and Implementaion of the Preisach Hysteresis Model in Nanopositioning, Master's thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics.
[23] Tan, X. (2002). Control of smart actuators, Ph.D. thesis, University of Maryland.
[24] Tan, X. and Baras, J. (2004). Modeling and control of hysteresis in magnetostrictive actuators, Automatica. 40(9):1469--1480. doi:10.1016/j.automatica.2004.04.006
[25] Tan, X. and Baras, J. (2005). Adaptive identification and control of hysteresis in smart materials, IEEE Transactions on Automatic Control. 50(6):827--839. doi:10.1109/TAC.2005.849215
[26] Tan, X. and Bennani, O. (2008). Fast inverse compensation of Preisach-type hysteresis operators using field-programmable gate arrays, In American Control Conference, 2008. Seattle, WA, pages 2365--2370. doi:10.1109/ACC.2008.4586845
[27] Tan, X., Iyer, R., and Krishnaprasad, P. (2001). Control of hysteresis: Theory and experimental results, In SPIE's 8th Annual International Symposium on Smart Structures and Materials, volume 4326. International Society for Optics and Photonics, Newport Beach, CA, pages 101--112. doi:10.1117/12.436463
[28] Zhao, X. and Tan, Y. (2006). Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator, Sensors and Actuators, A: Physical. 126(2):306--311. doi:10.1016/j.sna.2005.10.023


BibTeX:
@article{MIC-2015-3-1,
  title={{On Implementation of the Preisach Model: Identification and Inversion for Hysteresis Compensation}},
  author={Stakvik, Jon Åge and Ragazzon, Michael R.P. and Eielsen, Arnfinn A. and Gravdahl, Jan T.},
  journal={Modeling, Identification and Control},
  volume={36},
  number={3},
  pages={133--142},
  year={2015},
  doi={10.4173/mic.2015.3.1},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.