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Abstract

A challenge for precise positioning in nanopositioning using smart materials is hysteresis, limiting posi-
tioning accuracy. The Preisach model, based on the delayed relay operator for hysteresis modelling, is
introduced. The model is identified from experimental data with an input function ensuring information
for all input levels. This paper presents implementational issues with respect to hysteresis compensation
using the Preisach model, showing the procedure to follow, avoiding pitfalls in both identification and
inversion. Issues due to the discrete nature of the Preisach model are discussed, and a specific linear
interpolation method is tested experimentally, showing effective avoidance of excitation of vibrational
dynamics in the smart material. Experimental results of hysteresis compensation are presented, show-
ing an approximate error of 5% between the reference and measured displacement. Consequences of an
insufficient discretization level and a high frequency reference signal are illustrated, showing significant
deterioration of the hysteresis compensation performance.

Keywords: Hysteresis, Preisach, Identification, Inversion

1 INTRODUCTION

Materials exhibiting both sensing and actuation capa-
bilities, arising from a coupling of mechanical proper-
ties with applied electromagnetic fields, are commonly
referred to as smart materials Moheimani and Goodwin
(2001). These materials include, for instance, piezo-
electric materials and shape memory alloys, which are
materials that show nonlinear hysteretic behavior Tan
and Baras (2005). Hysteresis causes the output to lag
behind the input, and is the main form of nonlinearity
in piezoelectric materials Devasia et al. (2007). With
an accurate description of hysteresis, the effect can be
compensated for Eielsen et al. (2012); Iyer and Tan
(2009); Leang and Devasia (2006); Croft et al. (2001).

Hysteresis models can be roughly classified into two
groups, physical-based and phenomenological-based

Tan and Baras (2004); Esbrook et al. (2013). The
Jiles-Atherton model of ferromagnetic hysteresis Jiles
and Atherton (1986), is an example of a model based
on a physical description that can describe hysteresis
Rosenbaum et al. (2010). However the derivation of
such physical models can be an arduous task, and of-
ten result in high order models not suited for practi-
cal applications Ismail et al. (2009). Phenomenological
models, on the other hand, aim only to approximate
the physics, thus giving simpler models. The Preisach
operator model Iyer and Tan (2009); Hughes and Wen
(1997); Iyer and Shirley (2004); Tan et al. (2001); Tan
and Baras (2005); Leang and Devasia (2006); Zhao and
Tan (2006) for hysteresis modelling was first regarded
as a physical model for hysteresis based on some hy-
pothesis concerning the physical mechanisms of mag-
netization Mayergoyz (2003). However in later years
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Figure 2: Illustration of feed forward hysteresis com-
pensation.

the model has been recognized as a phenomenological-
based model mainly due to a more general description.

The idea of Preisach models, including the Preisach
operator, the Krasnosel’skii-Pokrovskii (KP) operator
Riccardi et al. (2012); Tan and Bennani (2008) and
the Prandtl-Ishlinskii (PI) operator Al Janaideh et al.
(2011); Macki et al. (1993) is to calculate an output as
a sum of weighted basis operators. The Preisach oper-
ator is described as a delayed relay element, depicted
in Fig. 1, the KP operator as a delayed relay element
with final slope and the PI operator as play and stop
elements. Consequently, due to their similar structure,
these operators are referred to as Preisach-type oper-
ators Tan and Bennani (2008); Iyer and Tan (2009);
Rosenbaum et al. (2010). This paper will focus specif-
ically on the Preisach operator, for more information
about the PI and KP operators the reader is advised
to consult Tan and Bennani (2008) as a starting point.

Numerous papers have presented hysteresis com-
pensation by employing the Preisach model, however,
there are few references to the difficulties and chal-
lenges with the implementation of such a hysteresis
compensation scheme. This paper demonstrates im-
portant aspects to keep in mind when implementing
an identification and inversion scheme based on the
Preisach operator. The Preisach operator has been
chosen due to its popularity, and its common use in
the literature. Several implementational issues are
discussed and explained with respect to the Preisach
model, showing the procedure to follow for hysteresis
compensation, avoiding pitfalls in both identification
and inversion. In Tan et al. (2001) interpolation is

proposed to avoid discrete inputs from the inversion
algorithm, however no method for choosing interpola-
tion points was proposed. This paper experimentally
tests a specific linear interpolation method, showing ef-
fective avoidance of vibrational dynamics in the smart
material.

In order to compensate for hysteresis with the
Preisach model, the Preisach density function, which
corresponds to a weight for each delayed relay element,
must be identified. One of the first methods proposed
for identification was to twice differentiate the Everett
function, obtained by applying first order reversal in-
puts to the material Mayergoyz (2003), i.e. changing
the input signal to the opposite direction. However
this method involves differentiation of a measurement,
and will consequently be highly sensitive to measure-
ment noise. The most common method for identifica-
tion of the Preisach density function is based on the
constrained least squares method Iyer and Tan (2009);
Iyer and Shirley (2004); Galinaitis et al. (2001); Tan
(2002); Eielsen (2012). In contrast to linear systems,
hysteresis is a rate-independent effect, i.e. that in or-
der to maximize the information through identification,
only the input magnitude needs to be varied, and not
the input frequencies Iyer and Shirley (2004).

Compensation of hysteresis is commonly achieved
by feed forward of an inverse hysteresis input Deva-
sia et al. (2007), illustrated in Fig. 2. This has, for
instance, been done for the Coleman-Hodgdon model
Eielsen et al. (2012) and the Preisach model with the
construction of a right inverse of the hysteresis model
Tan and Baras (2005); Hughes and Wen (1997); Croft
et al. (2001). However analytical solutions of Preisach-
type operators generally do not exist, with the excep-
tion of the PI model described with play operators,
which inverse turns out to be a stop-type PI opera-
tor Kuhnen (2003); Tan and Bennani (2008). Conse-
quently, the inversion of the Preisach operator often
has to be carried out iteratively Iyer et al. (2005). In
this paper this is done based on a closest match algo-
rithm Tan et al. (2001).

It is well known that negative phase introduces a
phase lag between the input and output, which must
not be confused with the lagging behind property of
the hysteresis nonlinearity Devasia et al. (2007). Due
to this, if a time delay and/or a low pass filter is
present, the system will experience a phase lag in ad-
dition to the real hysteresis. However such a model is
only valid for frequencies close in value to the frequen-
cies used to identify it Stakvik (2014). A time delay of
Td = 4.58× 10−4s has, for instance, been reported in a
commercial available atomic force microscopy (AFM),
where the source of this time delay is speculated to be
the displacement sensor in the AFM Ragazzon et al.
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(2014).
The remainder of this paper is organized as follows.

The Preisach model is described in Section 2. Section
3 first states the experimental setup, before the identi-
fication procedure is explained together with some im-
plementational aspects. In Section 4 experimental re-
sults of hysteresis compensation are presented, study-
ing both the effect of low discretization and high fre-
quency on the reference signal. Finally, in Section 5
some concluding remarks are drawn.

2 MODELING

2.1 The Preisach Operator

The Preisach operator is built up by the delayed relay
operator, shown in Fig. 1, where the output y to an
input u, for a pair of thresholds (β, α), with β ≤ α is
given as

y(t) = Rβ,α[u, ξ](t) =


1, for u(t) > α

y(t− 1), for β < u(t) < α

−1, for u(t) < β

(1)
where t is the time, y(t) is the relay output at time t,
defined from the previous output y(t − 1) = ξ where
ξ is the state of the relay, and Rβ,α the output of the
relay corresponding to the (β, α) pair.

Further, the output of the Preisach operator is cal-
culated as a weighted superposition of delayed relays.
For an applied input uβ,α ∈ {+1,−1}, the output of
the Preisach operator is given by Mayergoyz (2003)

y(t) =

∫∫
α≥β

µ(β, α)Rβ,α[u, ξ](t)dβdα (2)

where µ(β, α), called the Preisach density function, is a
nonnegative weight function, representing the weights
of each hysteron in the Preisach plane S = {(β, α) :
α ≥ β, α ≤ αm, β ≥ βm}, where αm and βm refer to
the highest and lowest values for α and β respectively.
The Preisach plane S can be geometrically divided into
two subregions, S+, which corresponds to relays with
output value +1, and S−, corresponding to output val-
ues of −1.

To understand the changing states of the Preisach
plane, assume that at some initial time t0, the input
u(t0) = u0 < βm. Hence, all delayed relay elements
have output value −1. Further, assume that the in-
put is increased monotonically until some maximum at
time t1, where the input value is u1. The correspond-
ing Preisach plane is illustrated in Fig. 3a, where the
boundary between S+ and S− is the horizontal line

β

α
α = β

βm

αm
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S+

u1

(a)

β

α
α = β

βm

αm
S−

S+

u2
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Figure 3: Illustration of the staircase memory curve of
the Preisach Plane.

α = u1. Then all elements below the memory curve
are turned on, that is, they have a α value lower than
u1, likewise, all hysterons with α > u1 are turned off.
Next, the input is decreased monotonically until some
input u2 at time t2, then all hysterons with a β value
higher than u2 will be switched off. This results in the
staircase memory curve shown in Fig. 3b.

Based on the regions S+ and S− the output in (2)
can be rewritten to

y(t) =

∫∫
S+

µ(β, α)dβdα−
∫∫
S−

µ(β, α)dβdα (3)

where the negative contribution is subtracted from the
positive contribution. Based on this equation the rate-
independent property of the Preisach operator is ob-
served. The output of (3) only depends on the regions
S+ and S−, which again is defined from the past se-
quence of local maxima and minima of the input. Con-
sequently, since the output only depends on the levels
of the input, and not the frequency, the Preisach oper-
ator is rate-independent.

2.2 Discretization

In order to implement the discrete Preisach model
numerically, the Preisach plane must be discretized.
A common method of doing this is to partition the
Preisach plane into subregions, shown in Fig. 4, where
a discretization level of nh = 4 results in nh + 1 input
levels. The weight µ(β, α) is then described as a center
weight, shown as red dots in the same figure. This im-
plies that if the red dot is a part of the S− region, the
contribution from this subregion will be negative, cor-
respondingly, if the dot is part of S+ the contribution
will be positive. The input levels n = 1 and n = h+ 1
refer to βm and αm respectively, which define the range
of the Preisach model as shown in Fig. 3.
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Figure 4: Partition of Preisach plane with center
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Figure 5: Nanopositioning stage.

3 IDENTIFICATION

3.1 Experimental setup

The aim of this work is to identify and compensate
for hysteresis by running tests on a piezoelectric actu-
ator in a nanopositioning laboratory. The experimen-
tal setup consists of a dSPACE DS1103 hardware-in-
the-loop system, an ADE 6810 capacitive gauge, an
ADE 6501 capacitive probe from ADE Technologies,
a Piezodrive PDL200 voltage amplifier, the custom-
made long-range serial-kinematic nano-positioner from
EasyLab (see Fig. 5), and two SIM 965 programmable
filters. The capacitive measurement has a sensitivity
of 1/5 V/µm and the voltage amplifier has a gain of
20 V/V. The programmable filters were used as recon-
struction and anti-aliasing filters. With the DS1103
system, a sampling frequency of 100 kHz is used in all
experiments.

3.2 Constrained Linear Least Squares
Identification

In this paper, all identification schemes were conducted
off-line with a constrained linear least squares method.
Recall that the Preisach density function, µ(β, α) is
nonnegative, which gives the constraints for the least
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(b) Estimated distribu-
tion of the Preisach
weights with nh = 15.

Figure 6: Fig. (a) shows an example of an input sig-
nal with sufficient reversals for identification
of a Prisach model with discretization level
nh = 15. Fig. (b) shows the correspond-
ing Preisach distribution based on the input
signal in Fig. (a).

squares estimate µ̂(β, α) ≥ 0, where µ̂(β, α) is the esti-
mate of µ(β, α). In order to estimate µ̂(β, α), a time se-
ries of measured input and outputs were used to create
an over-determined system of linear equations based
on a discretized form of (2)


y(t1)
y(t2)

...
y(tnt)

 =


A1R1(t1) · · · AqRq(t1)
A1R1(t2) · · · AqRq(t2)

...
. . .

...
A1R1(tnt) · · · AqRq(tnt)



µ̂1

µ̂2

...
µ̂nq

+η0

(4)
where the vector consisting of y values is the measured
hysteretic output, η0 is a constant contribution, Ri(tj)
is the output calculation for Preisach element i at time
j, corresponding to Rβ,α[u, ξ](ti) in (2), nt is the num-
ber of samples and nq is the number of Preisach ele-
ments, given as

nq =
nh(nh + 1)

2
(5)

where nh is the level of discretization.
The parameters to be identified, µ̂ and η̂0, which

is the estimate of η0, is then found using the pseudo
inverse as

µ̂ = A+(y − η̂0) (6)

where η̂0 is a measurement bias component, A+ is the
pseudo inverse of the matrix A in (4), µ̂ is the vector
of estimated Preisach weights and y is the measured
output of the hysteresis. This identification scheme
can be performed by the procedure outlined in the next
subsection.

When identifying the Preisach density function, the
input used for identification is of vital importance.
Choosing an input with an equal or larger number of
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(a) Small input amplitude, [−84, 84].
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(b) Suitable input amplitude, [-91,91].
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(c) Large input amplitude, [-150,150].

Figure 7: Showing the detrimental effects on the Prisach weight function using wrong input amplitudes for
identification of the discrete model. The model is defined for an input range of [-90,90].

input reversals compared to the number of discretiza-
tion levels, nh, results in at least one reversal for each
Preisach operator. Consequently, such a number of in-
put reversals will guarantee that every delayed relay
element is switched on and off at least once, provid-
ing excitation of all Preisach elements. Such an input
is shown in Fig. 6a, where a sinusoidal signal with
increasing amplitude provides a sufficient number of
input reversals for identifying a Preisach model with
nh = 15. An example of an identified Preisach distri-
bution, obtained from the experimental setup, can be
seen in Fig. 6b.

Since the hysteresis nonlinearity is rate-independent,
the frequency of the input signal does not affect the
hysteresis response. However due to the dynamics in
the smart material and low pass filters in the exper-
imental setup, the frequency of the identification sig-
nal must be restricted. This is the case in piezoelec-
tric actuators, where a creep effect appears for low
frequencies, while vibration dynamics are excited at
high frequencies. In addition, low pass filters have
an increasing negative phase for increasing frequencies.
For the experimental setup applied in this work, the
creep effect occurs below 5 Hz, while the vibration dy-
namics have a resonance frequency of about 780 Hz
Stakvik (2014). To avoid vibrations, the fundamen-
tal frequency of the input should be at least a factor of
ten below the resonance frequency, preferably even less
Devasia et al. (2007). Consequently, the identification
signal should be chosen to avoid both high and low
frequency issues. A more detailed discussion of these
issues are presented in Croft et al. (2001), where the
effect of both creep and vibration are modelled prior
to the hysteresis identification.

3.3 Aspects of Implementation

The estimated bulk contribution, η̂0, in eq. (6) can be
viewed as a constant bias component outside the range

of the Preisach model. To identify both µ̂ and η̂0, a
repeating two step procedure has been applied. Firstly,
the Preisach weight µ̂ is identified with an initial η̂0,
typically zero, satisfying the constraints. Secondly, the
bulk contribution η̂0 is estimated based on the first
estimate of µ̂. This procedure is repeated until the es-
timate of η̂0 converges to some value. In this paper the
MATLAB functions lsqnonneg and lsqnonlin are em-
ployed to implement this identification procedure. If
the bulk contribution η̂0 is not identified, the Preisach
weight function µ̂ has to contain this constant contri-
bution, which can cause a significant degradation of
performance of the identified model.

The discrete Preisach model is defined by two pa-
rameters, the discretization level nh and the range
(βm, αm). During an identification process it is impor-
tant that the range of the input signal and the range
of the Preisach model correspond. In the rest of this
paper it is assumed that all Preisach elements have an
initial state of −1, i.e. in the S− region, and that the
input resembles the increasing signal shown in Fig. 6a.
This ensures that the Preisach elements corresponding
to small (β, α) values are excited first, due to the ini-
tial negative input. Below, three different input ranges
are employed in identification of a Preisach model with
discretization level nh = 15, βm = −90 and αm = 90.

• In Fig. 7a a too small input range is applied for the
Preisach model. As a result of this, the end diag-
onal elements in the Preisach distribution is zero.
Moreover, such an input range does not excite any
border element of the distribution more than max-
imally once (depending on if all Preisach weights
are defined as positive or negative initially), mak-
ing the model store some of the static bulk contri-
bution η̂ in these border elements.

• By applying a more suitable input range, i.e. [-
91,91], all elements of the Preisach distribution are
excited, illustrated in Fig. 7b. This also removes
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Figure 8: Model output when identifying using a 20 Hz sine wave, with 90 V amplitude, with nh = 20 as
discretization level.

the stored static contribution seen in the border el-
ements in the previous case. To excite all elements
in the discrete Preisach model, the maximum am-
plitude of the input signal has to exceed αm for
the states to switch from -1 to 1. This is achieved
with the input range in this case.

• When employing a too large input range, as shown
in Fig. 7c, the end diagonal elements have to con-
tain the weights for all inputs exceeding (βm, αm).
This will make the model a poor fit for all input
values larger than the Preisach model range.

An identified Preisach model will, when provided
with an input signal, produce a hysteretic output. This
should be done to validate that the identified model
captures the measured hysteresis behavior. In Fig. 8a
this verification has been done on a sinusoidal signal of
20 Hz, using a Preisach model with discretization level
nh = 20. The hysteresis loop between the input volt-
age and output measurement can be seen in Fig. 8b.
These plots also illustrate the discrete nature of the
Preisach model, where the output changes whenever
the values of the delayed relay elements switches. The
steps of the model output vary in step size, resulting
from different Preisach weights in the identified model.

The discrete behavior of the Preisach operator, dis-
cussed above, creates an error between the measured
and modelled output. To reduce this error, the dis-
cretization level of the model can be increased, which
will improve the fit between the measured output and
the model output. Concerns related to a higher dis-
cretization level is that the model order increases,
which in turn makes both identification and inversion
more time consuming.
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Figure 9: Illustration of the proposed linear interpola-
tion applied in the inverse method.

4 INVERSION

4.1 Inversion Algorithm and Interpolation

As previously mentioned, to compensate for hystere-
sis the Preisach model must be inverted. However the
delayed relay operator does not have an analytical in-
verse, and therefore requires a numerical approxima-
tion. In this paper a closest match algorithm is im-
plemented, exploiting the discrete nature of the model
by finding the input value which produces an input as
close as possible to the reference signal. Due to the
closest match property, the inverted signal will always
have the optimal value based on the discrete model.
The implementation of the closest match algorithm is
outlined in more detail in Tan et al. (2001).

The inverted input of the discrete Preisach model
naturally has a discrete behavior, which introduces
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high frequencies in the inverted signal in the discrete
steps. These frequencies can excite the vibration dy-
namics in stiff structures with little damping, such as
devices using piezoelectric actuators, causing signifi-
cant loss of precision in hysteresis compensation. Con-
sequently, to avoid these vibrations, the input should
be smoothed, which can be performed by, for instance,
linear interpolation as proposed in Tan et al. (2001).
In this paper, a specific method for choosing interpo-
lation points is proposed, illustrated in Fig. 9, where
each point to interpolate is chosen at a discrete step
of the inverted signal. The discrete input in the figure
refers to the inverted signal without interpolation. The
resulting inverted input signal significantly reduces the
magnitude of the higher frequency components (result-
ing from the discrete steps), subsequently attenuating
the excitation of the vibration dynamics. The perfor-
mance of a few other interpolation methods are studied
in Stakvik (2014).

By employing interpolation for smoothing, the hys-
teresis compensation scheme cannot be applied for real-
time implementation with closed loop control. The in-
terpolation procedure requires the next step of the dis-
crete input, however since the reference signal is calcu-
lated in real-time of a controller the interpolation will
be affected by a varying time-delay. This time-delay is
due to the uncertainty of the future reference signals
for the inversion algorithm. This issue can be circum-
vented by applying a direct feed-forward compensation
from the reference trajectory, and in this way avoiding
the varying time-delay.

4.2 Experimental Results of Hysteresis
Compensation

If a suitable input range is applied in the identifica-
tion of the model, experimental tests of hysteresis com-
pensation can be performed. This section will exem-
plify some practical issues concerning the choice of dis-
cretization level and reference frequency for hysteresis
compensation. The following three scenarios will illus-
trate the consequence of a too small discretization level,
a too high reference frequency, while the last scenario
exemplifies the best performance of hysteresis compen-
sation achieved by applying the Preisach model. For
all experiments an input with 100 reversals is used for
identifying the models. The reference signal is a sinu-
soidal with 10 µm amplitude, with the frequencies of
the input signal defined for each scenario.

4.2.1 Low Discretization

Applying a low discretization level on the Preisach
model is desirable due to low computational effort in
identification and inversion. Fig. 10 shows hysteresis

compensation based on a model with a discretization
level nh = 10 and reference input as a sinusoidal signal
of 5 Hz. The error between the reference and the mea-
surement is significant, in addition, the measurement
lags behind the reference, i.e. it does not compensate
for the hysteresis sufficiently. By comparing the mea-
surement in Fig. 10 with the interpolation method in
Fig. 9, the same decreasing ramp is observed in the
maximum of the reference. This implies that for low
nh the interpolation method causes a significant error
in the extremums of the reference.

Additionally, the low discretization level introduces
an error in the extremum of the reference that can
not be explained by the interpolation method. This
error originates from a poor model description of the
hysteresis, where the output is modelled incorrectly for
these values, despite the fact that the identification was
conducted with a larger input range than the maximum
amplitude of the reference signal. If the discretization
level is increased the model description should be able
to capture these variations more precisely.

4.2.2 High Frequency

Due to the poor performance of the low discretization
level above, the discretization is increased to nh = 100.
The interpolation procedure was introduced to avoid
large frequency components in the input signal due to
steps in the original signal. However if the frequency
of the reference signal is increased, the frequency com-
ponents of the system also increase, causing vibrations
in the piezoelectric actuator. These vibrations are il-
lustrated in Fig. 11 where the reference signal has a
frequency of 50 Hz. The measurement reveals that the
vibrations have a frequency of about 750 Hz, corre-
sponding to the resonant dynamics of the piezoelectric
actuator. Even though there are significant vibrations
in the measurement, the amplitude of the error is con-
siderably smaller than for the previous case. This is
mainly due to the increase of the discretization level.

In general, vibrations as in Fig. 11, are present when
the reference frequency is lower. However for a refer-
ence signal with sufficiently low fundamental frequency,
the magnitude of the frequency components, of the in-
verted input around the resonance frequency, is suffi-
ciently low for the vibrations to be dominated by other
sources of noise. To apply reference signals with high
fundamental frequencies, some kind of vibrational com-
pensation scheme must be performed.

4.2.3 High Discretization and Low Frequency

By combining the high discretization level of nh = 100
with low reference frequency of 5 Hz, a best perfor-
mance of hysteresis compensation using the Preisach
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(a) Comparison of reference and measurement.
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(b) Reference-measurement relationship.

Figure 12: Best performance of Preisach model hysteresis compensation with discretization level nh = 100.
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Figure 10: A too low discretization level, nh = 10, on
the Preisach model causing the hysteresis
compensation to not be sufficient.
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Figure 11: Hysteresis compensation with a too high
reference frequency for Preisach model with
discretization level nh = 100, where the vi-
brations are caused by actuator dynamics.

model is illustrated in Fig. 12. From Fig. 12b
the reference-measurement relationship shows that the
hysteresis is compensated, and from Fig. 12a, the mea-
surement follows the reference without lagging behind.
The error between reference and measurement is ap-
proximately 5% at the maximum amplitude, which
can be due to varying environmental conditions, e.g.
temperature variations of the piezoelectric material,
between the time of identification and compensation.
Another reason for the error can be due to the fact
that there are some inaccuracies in the identified model
close to the extremums of the reference. This hypoth-
esis is supported by the fact that the measurement has
a larger amplitude than the reference. For hysteresis
compensation using the Coleman-Hodgdon model, the
error has been shown to be less than 1% Eielsen et al.
(2012). When comparing with these results, compen-
sation of hysteresis with the Preisach model performs
poorly, however, an adaptive identification procedure
could increase the compensation performance.

5 CONCLUDING REMARKS

This paper presents implementational issues of hystere-
sis compensation by employing the Preisach model,
based on the delayed relay operator. Suggestions of
how to avoid these issues are presented to obtain a sat-
isfactory performance of the hysteresis compensation.

In particular, aspects of the identification and inver-
sion procedure are shown, and the effect of different
model parameters and input ranges are illustrated. In
the discrete model, the maximum input range should
exceed the range of the Preisach model with a small
amount. A proposal of how to estimate both the
Preisach weight function and the bulk modulus was
given, and results from an identification were shown.

Further, the inversion procedure was explained, fo-
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cusing firstly on the need for interpolation of the in-
verted signal to avoid unnecessary high frequencies. A
specific method for choosing interpolation points was
proposed and illustrated. Issues with low discretization
levels and high frequency reference signals were illus-
trated with experimental results, showing significant
errors and vibrations, respectively. At last, a best per-
formance of hysteresis compensation by applying the
Preisach model was presented.
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