**Page description appears here**

“A Proactive Strategy for Safe Human-Robot Collaboration based on a Simplified Risk Analysis”

Authors: Audun Sanderud, Trygve Thomessen, Hisashi Osumi and Mihoko Niitsuma,
Affiliation: PPM AS and Chuo University, Tokyo
Reference: 2015, Vol 36, No 1, pp. 11-21.

     Valid XHTML 1.0 Strict

Keywords: Safe Human-Robot Collaboration, Risk Field, Risk Analysis

Abstract: In an increasing demand for human-robot collaboration systems, the need for safe robots is crucial. This paper presents a proactive strategy to enable an awareness of the current risk for the robot. The awareness is based upon a map of historically occupied space by the operator. The map is built based on a risk evaluation of each pose presented by the operator. The risk evaluation results in a risk field that can be used to evaluate the risk of a collaborative task. Based on this risk field, a control algorithm that constantly reduces the current risk within its task constraints was developed. Kinematic redundancy was exploited for simultaneous task performance within task constraints, and risk minimization. Sphere-based geometric models were used both for the human and robot. The strategy was tested in simulation, and implemented and experimentally tested on a NACHI MR20 7-axes industrial robot.

PDF PDF (3832 Kb)        DOI: 10.4173/mic.2015.1.2

DOI forward links to this article:
  [1] Audun Ronning Sanderud, Mihoko Niitsuma and Trygve Thomessen (2015), doi:10.1109/ETFA.2015.7301542
  [2] Ana M. Djuric, R.J. Urbanic and J.L. Rickli (2016), doi:10.4271/2016-01-0337
  [3] Azfar Khalid, Pierre Kirisci, Zied Ghrairi, Klaus-Dieter Thoben and Jürgen Pannek (2016), doi:10.1007/s12159-016-0151-x

[1] Ahuactzin, J.M. and Gupta, K.K. (1999). The kinematic roadmap: A motion planning based global approach for inverse kinematics of redundant robots, IEEE Transactions on Robotics and Automation. 15:653--669. doi:10.1109/70.781970
[2] Balan, L. and Bone, G.M. (2006). Real-time 3D collision avoidance method for safe human and robot coexistence, In IEEE International Conference on Intelligent Robots and Systems. pages 276--282. doi:10.1109/IROS.2006.282068
[3] Behnisch, K. (2008). White Paper Safe collaboration with ABB robots Electronic Position Switch and SafeMove, 2008. pages 1--45.
[4] Berenson, D. and Kuffner, J. (2011). Task Space Regions : A Framework for Pose- Constrained Manipulation Planning, Robotics Institute. Paper 1031. http://repository.cmu.edu/robotics/1031.
[5] Chesbrough, H.W. (2003). The Era of Open Innovation, MITSloan Management Review. 44:35--41. doi:10.1371/journal.pone.0015090
[6] Galambos, P. (2012). Vibrotactile Feedback for Haptics and Telemanipulation : Survey , Concept and Experiment, Acta Polytechnica Hungarica. 9(1):41--65.
[7] Guo, Z. and Hsia, T. (1990). Joint trajectory generation for redundant robots in an environment with obstacles, In Proceedings., IEEE International Conference on Robotics and Automation, volume1. pages 157--162. doi:10.1109/ROBOT.1990.125964
[8] Gupta, K. (2005). Path planning with general end-effector constraints: using task space to guide configuration space search, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. pages 1875--1880. doi:10.1109/IROS.2005.1545305
[9] Haddadin, S. and Albu-Schaffer, A. (2008). Evaluation of Collision Detection and Reaction for a Human-Friendly Robot on Biological Tissues, 6th IARP/IEEE-RAS/EURON Workshop on Technical Challenges for Dependable Robots in Human Environments.
[10] Haddadin, S., Albu-Schaffer, A., Frommberger, M., and Hirzinger, G. (2009). The “ DLR Crash Report ”: Towards a Standard Crash-Testing Protocol for Robot Safety - Part I : Results, In IEEE Intl. Conf. on Robotics and Automation. pages 272--279, 2009. doi:10.1109/ROBOT.2009.5152602
[11] Haddadin, S., Albu-Schaffer, A., Frommberger, M., and Hirzinger, G. (2009). The “ DLR Crash Report ”: Towards a Standard Crash-Testing Protocol for Robot Safety - Part II : Discussions, In IEEE International Conference on Robotics and Automation. pages 280--287, 2009. doi:10.1109/ROBOT.2009.5152711
[12] Hoffman, R.R., Johnson, M., Bradshaw, J.M., and Underbrink, A. (2013). Trust in Automation, Intelligent Systems, IEEE. 28(1):84--88. doi:10.1109/MIS.2013.24
[13] Khatib, O. (1985). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, In Robotics and Automation. Proceedings. 1985 IEEE International Conference on. pages 500--505. doi:10.1109/ROBOT.1985.1087247
[14] Koppula, H.S. and Saxena, A. (2013). Anticipating Human Activities using Object Affordances for Reactive Robotic Response, In Proceedings of Robotics: Science and Systems. 2013.
[15] KUKA. (2014). KUKA Lightweight Robot, 2014. http://www.kuka-labs.com/en/service_robotics/lightweight_robotics.
[16] Kulic, D. and Croft, E.a. (2006). Real-time safety for human–robot interaction, Robotics and Autonomous Systems. 54(1):1--12. doi:10.1016/j.robot.2005.10.005
[17] Lacevic, B. and Rocco, P. (2010). Kinetostatic danger field - a novel safety assessment for human-robot interaction, In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pages 2169--2174. doi:10.1109/IROS.2010.5649124
[18] Lacevic, B., Rocco, P., and Zanchettin, A.M. (2013). Safety Assessment and Control of Robotic Manipulators Using Danger Field, IEEE Transactions on Robotics. 29(5):1257--1270. doi:10.1109/TRO.2013.2271097
[19] Latombe, J.-C. and Barraquand, J. (1991). Robot Motion Planning: A Distributed Representation Approach, The International Journal of Robotics Research. 10(6):628--645. doi:10.1177/027836499101000604
[20] Mainprice, J. and Berenson, D. (2013). Human-robot collaborative manipulation planning using early prediction of human motion, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. pages 299--306. doi:10.1109/IROS.2013.6696368
[21] MRK-Systeme. (2014). KR 5 SI (SafeInteraction) Prospect, 2014. www.mrk-systeme.de_downloads_Prospekt_KR_5_SI_en.
[22] Muramatsu, Y., Niitsuma, M., and Thomessen, T. (2013). Building a cognitive model of tactile sensations based on vibrotactile stimuli, 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom). pages 149--154. doi:10.1109/CogInfoCom.2013.6719231
[23] Nakabo, Y. and Ishikawa, M. (1998). Visual impedance using 1 ms visual feedback system, In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), volume3. IEEE, pages 2333--2338. doi:10.1109/ROBOT.1998.680671
[24] NORSOK. (2001). NORSOK STANDARD Z-013N, September. 2001.
[25] Oriolo, G., Ottavi, M., and Vendittelli, M. (2002). Probabilistic motion planning for redundant robots along given end-effector paths, In IEEE/RSJ International Conference on Intelligent Robots and Systems, volume2. pages 1657--1662. doi:10.1109/IRDS.2002.1043993
[26] Patel, R. and Shadpey, F. (2005). Control of Redundant Robot Manipulators, Springer.
[27] Petric, T. and Zlajpah, L. (2013). Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem, Robotics and Autonomous Systems. 61(9):948--959. doi:10.1016/j.robot.2013.04.019
[28] RethinkRobotics. (2013). Rethink Robotics, 2013. www.rethinkrobotics.com.
[29] RIA/ANSI. (1999). R15, 06 1999 American Standard for industrial Robots Safety Requirement. 1999.
[30] Sanderud, A.R. and Thomessen, T. (2014). Releasing the Synergy of Human-Robot Collaboration - Redundant Robotics in Practice, ACTA Tehnica Corviniensis - Bulletin of Engineering. 7(1):161--164.
[31] Sanderud, A.R., Thomessen, T., Hashimoto, H., Osumi, H., and Niitsuma, M. (2014). An approach to path planning and real-time redundancy control for human-robot collaboration, In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, pages 1018--1023. doi:10.1109/AIM.2014.6878214
[32] Sanderud, A. R.n. (2012). Task programming of Redundant Industrial Robots - A Virtually Extended Nullspace Formulation Verified Through Obstacle Avoidance, Master's thesis, Norwegian University of Science and Technology, 2012.
[33] Slovic, P. (1987). Perception of Risk, Science. 236(4799):280--285. doi:DOI: 10.2307/1698637
[34] SMErobotTM. (2013). The European Robot Initiative for Strengthening the Comprehensiveness of SMEs in Manufacturing, 2013. www.smerobot.org.
[35] Stilman, M. (2007). Task constrained motion planning in robot joint space, In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pages 3074--3081. doi:10.1109/IROS.2007.4399305
[36] Takimoto, A., Hashimoto, H., and Niitsuma, M. (2014). Effective destination determination for Semi-Autonomous Smart Electric Wheelchair Based on History of Human Activity, In Industrial Informatics (INDIN), 2014 12th IEEE International Conference on. pages 769--775. doi:10.1109/INDIN.2014.6945609
[37] Thomessen, T. and Niitsuma, M. (2013). Cognitive Human-Machine Interface with multi- modal man-machine communication, In 4th IEEE International Conference on Cognitive Intocommunications. pages 873--876.
[38] Tsuji, T., Akamatsu, H., and Kaneko, M. (1997). Non-contact impedance control for redundant manipulators using visual information, In Proceedings of International Conference on Robotics and Automation, volume3. pages 2571--2576. doi:10.1109/ROBOT.1997.619348
[39] Zhang, Y. and Wang, J. (2004). Obstacle Avoidance for Kinematically Redundant Manipulators Using Dual Neural Network, IEEE Transactions on Systems Man and Cybernetics. 34(1):752--759. doi:10.1109/TSMCB.2003.811519
[40] Zlajpah, L. and Nemec, B. (2002). Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators, In IEEE/RSJ International Conference on Intelligent Robots and Systems, volume2. pages 1898--1903 doi:10.1109/IRDS.2002.1044033

  title={{A Proactive Strategy for Safe Human-Robot Collaboration based on a Simplified Risk Analysis}},
  author={Sanderud, Audun and Thomessen, Trygve and Osumi, Hisashi and Niitsuma, Mihoko},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.