**Page description appears here**

“Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed”

Authors: Tristan Perez and Thor I. Fossen,
Affiliation: University of Newcastle (Australia) and NTNU, Department of Engineering Cybernetics
Reference: 2008, Vol 29, No 1, pp. 1-19.

     Valid XHTML 1.0 Strict

Keywords: Identification, Frequency-domain, Time-domain, Marine structure models

Abstract: The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.

PDF PDF (571 Kb)        DOI: 10.4173/mic.2008.1.1

DOI forward links to this article:
  [1] François Rongère, Jean-Michel Kobus, Aurélien Babarit and Gérard Delhommeau (2011), doi:10.1051/lhb/2011052
  [2] Tristan Perez and Thor Inge Fossen (2009), doi:10.4173/mic.2009.1.1
  [3] Tristan Perez and Thor I. Fossen (2008), doi:10.4173/mic.2008.3.2
  [4] Tristan Perez and Thor I. Fossen (2011), doi:10.1016/j.oceaneng.2010.11.004
  [5] Oddgeir Dalane, Finn Faye Knudsen and Sveinung Lo set (2012), doi:10.1115/1.4004633
  [6] Tristan Perez and Mogens Blanke (2012), doi:10.1016/j.arcontrol.2012.03.010
  [7] Mingsheng Chen, Rodney Eatock Taylor and Yoo Sang Choo (2014), doi:10.1016/j.oceaneng.2013.10.004
  [8] Adi Kurniawan and Torgeir Moan (2012), doi:10.1016/j.egypro.2012.03.015
  [9] Giorgio Bacelli and John Ringwood (2013), doi:10.1016/j.ijome.2013.11.011
  [10] P. Ricci, J. Lopez, M. Santos, P. Ruiz-Minguela, J.L. Villate, F. Salcedo and A.F.deO. Falca o (2011), doi:10.1049/iet-rpg.2009.0197
  [11] (2011), doi:10.1002/9781119994138.refs
  [12] A. Iturrioz, R. Guanche, J.A. Armesto, M.A. Alves, C. Vidal and I.J. Losada (2014), doi:10.1016/j.oceaneng.2013.11.023
  [13] José A. Armesto, Raúl Guanche, Arantza Iturrioz, César Vidal and Iñigo J. Losada (2014), doi:10.1016/j.oceaneng.2014.01.013
  [14] Anup J. Nambiar, David I.M. Forehand, Morten M. Kramer, Rico H. Hansen and David M. Ingram (2015), doi:10.1016/j.ijome.2014.11.002
  [15] Mattia Raffero, Michele Martini, Biagio Passione, Giuliana Mattiazzo, Ermanno Giorcelli and Giovanni Bracco (2015), doi:10.1155/2015/980613
  [16] Jesús M. de la Cruz García, Joaquín Aranda Almansa and José M. Girón Sierra (2012), doi:10.1016/j.riai.2012.05.001
  [17] Josh Davidson, Simone Giorgi and John V. Ringwood (2015), doi:10.1016/j.oceaneng.2015.04.056
  [18] José A. Armesto, Raúl Guanche, Fernando del Jesus, Arantza Iturrioz and Iñigo J. Losada (2015), doi:10.1007/s40722-015-0027-1
  [19] Wanan Sheng, Raymond Alcorn and Anthony Lewis (2015), doi:10.1016/j.oceaneng.2015.06.023
  [20] Giacomo Moretti, Marco Fontana and Rocco Vertechy (2015), doi:10.1007/s11012-015-0235-8
  [21] Francesco Fusco and John V. Ringwood (2013), doi:10.1109/TSTE.2012.2196717
  [22] Elisabetta Tedeschi and Maider Santos-Mugica (2014), doi:10.1109/TPWRS.2013.2282213
  [23] Sebastien Olaya, Jean-Matthieu Bourgeot and Mohamed Benbouzid (2014), doi:10.1109/ICGE.2014.6835390
  [24] Ryan G. Coe and Diana L. Bull (2014), doi:10.1109/OCEANS.2014.7003037
  [25] Giorgio Bacelli, Philip Balitsky and John V. Ringwood (2013), doi:10.1109/TSTE.2013.2267961
  [26] Alessandro Bozzetto and Elisabetta Tedeschi (2014), doi:10.1109/EVER.2014.6844040
  [27] Yingguang Wang (2015), doi:10.1016/j.oceaneng.2015.09.049
  [28] Dr Ahmed Masmoudi, Alessandro Bozzetto, Ole Christian Spro and Elisabetta Tedeschi (2015), doi:10.1108/COMPEL-12-2014-0342
  [29] Francesco Ferri, Simon Ambühl, Boris Fischer and Jens Kofoed (2014), doi:10.3390/en7042246
  [30] David I. M. Forehand, Aristides E. Kiprakis, Anup J. Nambiar and A. Robin Wallace (2016), doi:10.1109/TSTE.2015.2476960
  [31] Hugo Mendonca and Sergio Martinez (2016), doi:10.1109/TSTE.2015.2466097
  [32] Romain Genest and John V. Ringwood (2016), doi:10.1007/s40722-016-0058-2
  [33] P. Ricci (2016), doi:10.1016/B978-0-12-803210-7.00003-7
  [34] Simone Giorgi, Josh Davidson and John V. Ringwood (2016), doi:10.1109/TSTE.2016.2515500
  [35] Frank Lemmer (né Sandner), Steffen Raach, David Schlipf and Po Wen Cheng (2016), doi:10.1016/j.egypro.2016.09.186
  [36] N. Nevaranta, M. Goubej, T. Lindh, M. Niemela and O. Pyrhonen (2016), doi:10.1109/EPE.2016.7695535
  [37] Romain Genest and John V. Ringwood (2017), doi:10.1109/TCST.2016.2554524
  [38] Marco Alves (2017), doi:10.1007/978-3-319-39889-1_10
  [39] Zhihuan Hu, Xin Li, Wenhua Zhao and Xiao Wu (2017), doi:10.1016/j.apor.2017.03.013
  [40] Giorgio Bacelli, Ryan Coe, David Patterson and David Wilson (2017), doi:10.3390/en10040472
  [41] Nicolás Faedo, Sébastien Olaya and John V. Ringwood (2017), doi:10.1016/j.ifacsc.2017.07.001
  [42] Ryan G. Coe, Carlos Michelen, Aubrey Eckert-Gallup and Cédric Sallaberry (2017), doi:10.1016/j.renene.2017.09.056
  [43] Hong Gao and Yang Yu (2017), doi:10.1016/j.energy.2017.11.036
  [44] Ryan G. Coe, Giorgio Bacelli, David G. Wilson, Ossama Abdelkhalik, Umesh A. Korde and Rush D. Robinett III (2017), doi:10.1016/j.ijome.2017.11.001
  [45] Yizhi Ye and Weidong Chen (2017), doi:10.1177/1687814017722081
  [46] J. Seixas de Medeiros and S. Brizzolara (2018), doi:10.1155/2018/1710253
  [47] Zhijia Wu, Carlos Levi and Segen F. Estefen (2018), doi:10.1016/j.apor.2018.02.009
  [48] Nedeleg Bigi, Morgann Behrel, Kostia Roncin, Jean-Baptiste Leroux, Alain Neme, Christian Jochum and Yves Parlier (2018), doi:10.1051/lhb/2018002
  [49] Weixing Chen, Feng Gao and Xiangdun Meng (2018), doi:10.1177/1475090218765803
  [50] Nicolás Faedo, Yerai Peña-Sanchez and John V. Ringwood (2018), doi:10.1016/j.oceaneng.2018.05.037
  [51] Ossama Abdelkhalik and Shangyan Zou (2018), doi:10.1016/j.renene.2018.08.004
  [52] Ø.W. Petersen, O. Øiseth and E. Lourens (2019), doi:10.1016/j.ymssp.2018.10.040
  [53] Biao Su, Karl Gunnar Aarsæther and David Kristiansen (2019), doi:10.1115/1.4042263
  [54] Hong Gao and Ruizhi Liang (2019), doi:10.1002/er.4398
  [55] Kasper Jessen, Kasper Laugesen, Signe M. Mortensen, Jesper K. Jensen and Mohsen N. Soltani (2019), doi:10.3390/app9061244
  [56] Wanan Sheng (2019), doi:10.1016/j.rser.2019.04.030

[1] Aguero, J. C. (2005). System Identification Methodologies Incorporating Constraints, Ph.D. thesis, Department of Elec. Eng. and Comp. Sc., The Univeristy of Newcastle, Australia.
[2] Al-Saggaf, U. Franklin, G. (1988). Model reduction via blanced realizations: An extension and frequency weighting techniques, IEEE Transactions on Automatic Control, 3.9:687 - 692 doi:10.1109/9.1280
[3] Cummins, W. (1962). The impulse response function and ship motion, Technical Report 1661, David Taylor Model Basin - DTNSRDC.
[4] Damaren, C. (2000). Time-domain floating body dynamics by rational approximations of the radiation impedance and diffraction mapping, Ocean Engineering, 27:687 - 705 doi:10.1016/S0029-8018(99)00015-3
[5] Faltinsen, O. (1990). Sea Loads on Ships and Offshore Structures, Cambridge University Press.
[6] Greenhow, M. (1986). High- and low-frequency asymptotic consequences of the Kramers-Kronig relations, J. Eng. Math., 20:293 - 306 doi:10.1007/BF00044607
[7] Hjulstad, A., Kristansen, E., Egeland, O. (2004). Statespace representation of frequency-dependant hydrodynamic coefficients, In Proc. IFAC Conference on Control Applications in Marine Systems.
[8] Ho, B. Kalman, R. (1966). Effective reconstruction of linear state-variable models from input/output functions, Regelungstechnik, 1.12:417 - 441.
[9] Holappa, K. Falzarano, J. (1999). Application of extended state space to nonlinear ship rolling, Ocean Engineering, 26:227 - 240 doi:10.1016/S0029-8018(97)10027-0
[10] Jefferys, E. (1984). Simulation of wave power devices, Applied Ocean Research, 6(1):31 - 39 doi:10.1016/0141-1187(84)90026-9
[11] Jefferys, E., Broome, D., Patel, M. (1984). A transfer function method of modelling systems with frequency depenant coefficients, Journal of Guidance Control and Dynamics, .4:490 - 494 doi:10.2514/3.19883
[12] Jefferys, E. Goheen, K. (1992). Time domain models from frequency domain descriptions: Application to marine structures, International Journal of Offshore and Polar Engineering, 2:191 - 197.
[13] Jordan, M. Beltran-Aguedo, R. (2004). Optimal identification of potential-radiation hydrodynamics of moored floating stuctures, Ocean Engineering. 31:1859-1914 doi:10.1016/j.oceaneng.2004.01.007
[14] Journee, J. (1993). Hydromechanic coefficients for calculating time domain motions of cutter suction dredges by cummins equations, Technical report, available http://www.shipmotions.nl, Delft University of Technology, Ship Hydromechanics Laboratory, Mekelweg 2, 2628 CD Delft, The Netherlands.
[15] Kaasen, K. Mo, K. (2004). Efficient time-domain model for frequency-dependent added mass and damping, In 23rd Conference on Offshore Mechanics and Artic Enginnering.OMAE, Vancouver, Canada.
[16] Kailath, T. (1980). Linear systems, Prentice Hall.
[17] Khalil, H. (2000). Nonlinear Systems, Prentice Hall.
[18] Kristansen, E. Egeland, O. (2003). Frequency dependent added mass in models for controller design for wave motion ship damping, In 6th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC'03, Girona, Spain.
[19] Kristiansen, E., Hjuslstad, A., Egeland, O. (2005). Statespace representation of radiation forces in timedomain vessel models, Ocean Engineering. 32:2195 - 2216 doi:10.1016/j.oceaneng.2005.02.009
[20] Kung, S. (1978). A new identification and model reduction algorithm via singular value decompositions, Twelth Asilomar Conf. on Circuits, Systems and Computers, pp. 705-714.
[21] Levy, E. (1959). Complex curve fitting, IRE Trans. Autom. Control, AC-4:37 - 43.
[22] Lozano, R., Brogliato, B., Egeland, O., Masche, B. (2000). Dissipative Systems Analysis and Control, Theory and Applications, Springer.
[23] McCabe, A., Bradshaw, A., Widden, M. (2000). A timedomain model of a floating body using transforms, In Proc. of 6th European Wave and Tidal energy Conference. University of Strathclyde, Glasgow, U.K.
[24] Newman, J. (1977). Marine Hydrodynamics, MIT Press.
[25] Nocedal, J. Wright, S. J. (2006). Numerical Optimization, Springer.
[26] Ogilvie, T. (1964). Recent progress towards the understanding and prediction of ship motions, In 6th Symposium on Naval Hydrodynamics.
[27] Parzen, E. (1954). Some conditions for uniform convergence of integrals, Proc. of The American mathematical Society, .1:55 - 58 doi:10.2307/2032105
[28] Perez, T. Fossen, T. (2007). A derivation of high-frequency asymptotic values of 3D added mass and damping based on properties of the Cummins equation, Technical report, School of Elec. Eng. and Comp. Science. The University of Newcaslte, AUSTRALIA.
[29] Perez, T. Lande, Ø. (2006). A frequency-domain approach to modelling and identification of the force to motion vessel response, In Proc. of 7th IFAC Conference on Manoeuvring and Control of marine Craft, Lisbon, Portugal.
[30] Salvesen, N., Tuck, E., Faltinsen, O. (1970). Ship motions and sea loads, Trans. The Society of Naval Architects and Marine Engineers - SNAME, 10:345 - 356.
[31] Sanathanan, C. Koerner, J. (1963). Transfer function synthesis as a ratio of two complex polynomials, IEEE Trans. of Autom. Control.
[32] Seron, M., Braslavsky, J., Goodwin, G. (1997). Fundamental Limitations in Filtering and Control, Springer.
[33] Söding, H. (1982). Leckstabilität im seegang, Technical report, Report 429 of the Institue f¨ur Schiffbau, Hamburg.
[34] Sutulo, S. Guedes-Soares, C. (2005). An implementation of the method of auxiliary state variables for solving seakeeping problems, Int. Ship Buildg. Progress. 5.4:357 - 384.
[35] Taghipour, R., Perez, T., Moan, T. (2008). Hybrid frequency - time domain models for dynamic response analysis of marine structrues, Ocean Engineering doi:10.1016/j.oceaneng.2007.11.002
[36] Tick, L. (1959). Differential equations with frequency dependent coefficients, Ship Research, .2:45 - 46.
[37] Unneland, K. (2007). Identification and Order Reduction of Radiation Force Models of Marine Structures, Ph.D. thesis, Department of engineerign Cybernetics, Norwegian University of Science and Tehcnology, NTNU. Norway.
[38] Unneland, K., Kristiansen, E., Egeland, O. (2005). Comparative study of algorithms obtaining reduced order state-space form of radiation forces, In Proceedings of the OCEANS'05, Washington D.C., USA.
[39] Verhaegen, M. Verdult, V. (2007). Filtering and System Identification, Cambridge.
[40] Xia, J., Wang, Z., Jensen, J. (1998). Nonlinear wave-loads and ship responses by a time-domain strip theory, Marine strcutures, 11:101 - 123.
[41] Yu, Z. Falnes, J. (1995). Spate-space modelling of a vertical cylinder in heave, Applied Ocean Research, 17:265 - 275 doi:10.1016/0141-1187(96)00002-8
[42] Yu, Z. Falnes, J. (1998). State-space modelling of dynamic systems in ocean engineering, Journal of hydrodynamics, China Ocean Press, pp. 1 - 17.

  title={{Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed}},
  author={Perez, Tristan and Fossen, Thor I.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.