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Abstract

The dynamics describing the motion response of a marine structure in waves can be represented within a
linear framework by the Cummins Equation. This equation contains a convolution term that represents
the component of the radiation forces associated with fluid memory effects. Several methods have been
proposed in the literature for the identification of parametric models to approximate and replace this
convolution term. This replacement can facilitate the model implementation in simulators and the analysis
of motion control designs. Some of the reported identification methods consider the problem in the
time domain while other methods consider the problem in the frequency domain. This paper compares
the application of these identification methods. The comparison is based not only on the quality of
the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the
identification method to incorporate prior information related to the model being identified. To illustrate
the main points arising from the comparison, a particular example based on the coupled vertical motion
of a modern containership vessel is presented.
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1 Introduction

Models for motion simulation of marine structures are
of paramount importance for the development of train-
ing simulators, hardware in the loop testing simulators,
motion control systems, wave energy converters, and
model-based fault detection and diagnosis techniques.
In recent years, there has been an increase of interest
in the use of linear time-domain models obtained from
frequency-domain data provided by seakeeping codes.
This modelling approach is very favorable since it al-
lows obtaining models from limited information about

the vessel: hull form and approximate mass distribu-
tion. These linear models are the basis of more complex
models obtained by adding nonlinear components like,
for example, viscous forces and mooring lines.

A key element for the modelling of the response of
marine structures in waves is the Cummins Equation,
which relates the motion of the marine structure to the
wave-induced forces within the linear time-invariant
framework (Cummins, 1962). This equation is an in-
tegro differential equation that contains a convolution
term representing fluid memory effects associated with
the dynamics of the radiation forces. This convolution
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term is inconvenient for simulation and also for the
analysis and design of motion control systems. Conse-
quently, there has been a great deal of literature ded-
icated to obtaining parametric models for its approx-
imation and replacement. Since the convolution is a
dynamic linear operation, it can be approximated by
a linear ordinary differential equation or state-space
model—and in the particular case of convolution term
in Cummins Equation, the approximating model is
linear-time-invariant.

Finding a state-space model approximation for the
convolution term in the Cummins Equation involves
the use of system identification. In this particular
application, the identification involves obtaining the
model structure, order, and parameter values from ei-
ther a frequency-response data computed by standard
hydrodynamic codes or an impulse-response data de-
rived from the frequency-domain data. Hence, the
identification problem can be posed either in the time
domain or in the frequency domain (with the subse-
quent conversion to time-domain to obtain the state-
space model). Due to these alternative problem formu-
lations, there has been a great deal of work reported in
the literature—see, for example, Jefferys et al. (1984),
Jefferys and Goheen (1992), Yu and Falnes (1995),
Yu and Falnes (1998), Holappa and Falzarano (1999),
Hjulstad et al. (2004), Kristansen and Egeland (2003),
Kristiansen et al. (2005), Jordan and Beltran-Aguedo
(2004), McCabe et al. (2005), and Sutulo and Guedes-
Soares (2005). Within the marine control systems com-
munity, the renewed interest in this work could be ac-
credited to the work of Kristansen and Egeland (2003).

Taghipour et al. (2008) provide a review of some of
the methods in detail, and show—via an example—
that the implementation of time-domain models based
on state-space and direct convolution evaluation give
results of similar quality. The direct convolution eval-
uation in discrete time results in a high-order finite im-
pulse response (FIR) model. The results in Taghipour
et al. (2008) also indicate that the gain in simulation
speed can be of up to 40 times when using state-space
models instead of direct convolution evaluation via FIR
models. This significant increase in simulation speed
is related to the Markovian property of the state-space
model. That is, in the FIR model, it is necessary to
save and process a large number of past response data
to be able to compute the convolution at each time step
of the simulation; whereas the state of a state-space
model summarises all the past information. Therefore,
it is sufficient to store and process only the state vari-
ables to compute the successor state given the excita-
tion.

This paper complements the results reported in
Taghipour et al. (2008) by comparing the application

of time- and frequency-domain identification methods.
The comparison is based not only on the quality of the
estimated models, but also on the ease of implementa-
tion of the identification method, ease of use, and the
flexibility of the method to incorporate prior informa-
tion related to the model being identified.

We concentrate on models of rigid marine structures
with zero forward speed. This class models is of sig-
nificant importance due the offshore industry and the
growing development of wave energy converters.

2 Cummins Equation and its

Properties

The equations of motion of a rigid marine structure
in body-fixed coordinates can be linearised about an
equilibrium point and be expressed as

Mδν̇ = δτ

δη̇ = δν,
(1)

where M is the inertia matrix, δη represents the gener-
alised perturbation position-orientation vector and δν
the generalised perturbation body-fixed velocity vec-
tor. The generalised pressure force δτ vector can be
separated into two components:

δτ = δτ rad + δτ exc, (2)

where the first component corresponds to the radiation
forces arising from the change in momentum of the fluid
due to the motion of the structure, and the second
component represents the pressure forces due to the
incoming waves.

Cummins (1962) studied the radiation hydrody-
namic problem in an ideal fluid and found the following
representation for linear the pressure forces:

δτ rad = −Aδν̇ −
∫ t

0

K(t − t′)δν(t′) dt′. (3)

The first term in (3) represents forces due the acceler-
ations of the structure, and A is the constant positive
definite added inertia matrix. The second term repre-
sents fluid memory effects that incorporate the energy
dissipation due the radiated waves consequence of the
motion of the structure. The kernel of the convolution
term, K(t), is the matrix of retardation or memory
functions (impulse responses).

By renaming the variables, combining terms, and
adding the hydrostatic restoring forces due to gravity
and buoyancy (τ hs = −Gξ), we obtain the Cummins
Equation as it normally appears in the hydrodynamic
literature:

(M + A)ξ̈ +

∫ t

0

K(t − t′)ξ̇(t′) dt′ + Gξ = δτ exc, (4)
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with ξ = δη.
Equation (4) describes the motion of the structure

at zero speed for any wave excitation δτ exc(t) provided
the linearity assumption is satisfied; and it forms the
basis of more complex models, which can be obtained
by adding non-linear terms to represent different phys-
ical effects.

2.1 Frequency-domain Representation

When (4) is considered in the frequency domain, it
takes the following form (Newman, 1977; Faltinsen,
1990):

(−ω2[M + A(ω)] − jωB(ω) + G)ξ̃ = δτ̃ exc, (5)

where ξ̃ and δτ̃ exc are the complex response and exci-
tation variables:

ξi(t) = ξ̄i cos(ωt + ǫi) =⇒ ξ̃i = ξ̄i exp(jǫi)

τi(t) = τ̄i cos(ωt + εi) =⇒ τ̃i = τ̄i exp(jεi).
(6)

The parameters A(ω) and B(ω) are the frequency-
dependent added mass and damping respectively.

Equation (5) is also commonly written in a mixed
frequency-time-domain form:

[M + A(ω)]ξ̈ + B(ω)ξ̇ + Gξ = δτ exc. (7)

This form is rooted deeply in the literature of marine
hydrodynamics. However, one should bear in mind
that (7) is not a time-domain model, rather a differ-
ent way or writing (5). In other words, (7) describes
the steady-state response due to sinusoidal excitation,
provided the coefficients are evaluated at the frequency
of excitation forces. The abuse of notation of this false
time-domain model has been discussed eloquently in
the literature (Tick, 1959; Cummins, 1962).

2.2 Relationship between Frequency- and

Time-domain Models

The relationship between the parameters of the models
(4) and (5), were found by Ogilvie (1964) via direct
application of the Fourier Transform under a sinusoidal
regime:

A(ω) = A − 1

ω

∫

∞

0

K(t) sin(ωt) dt,

B(ω) =

∫

∞

0

K(t) cos(ωt) dt.

(8)

From these expressions, it follows

A = lim
ω→∞

A(ω) (9)

From the application of Fourier Transform, it also fol-
lows the time- and frequency-domain representation of
the retardation functions:

K(t) =
2

π

∫

∞

0

B(ω) cos(ωt) dω, (10)

and

K(jω) =

∫

∞

0

K(t)e−jωt dω,

= B(ω) + jω[A(ω) − A].

(11)

3 Hydrodynamic Codes and

Non-Parametric Models

Hydrodynamic codes based on potential theories (2D
and 3D) are nowadays readily available for the compu-
tation of the frequency-dependant added mass, A(ω),
and potential damping, B(ω). These data are com-
puted for a reduced set of frequencies of interest;
and therefore, they provide a mean to determine non-
parametric models of the convolution terms via appli-
cation of (10) and (11). These codes, however, have
their inherent limitations due to theoretical and imple-
mentation issues.

In 3D or panel method codes, the size of the pan-
els used to discretize the surface of the hull limit the
accuracy of the computations at high frequency. As
a rule of thumb, the characteristic size of the panels
should be of the order of 1/8 of the wave length corre-
sponding to the larger frequency used in the computa-
tions (Faltinsen, 1990). This limits the upper frequency
since smaller panels increase the number of computa-
tions significantly and result in numerical problems.
3D codes often solve for the particular cases of infi-
nite and zero frequency, which result from particular
boundary conditions on the free-surface that ensure no
waves are generated.

For slender vessels, codes based on strip theory (2D)
can be used. Slenderness results in the velocity field
being nearly constant along the longitudinal direction.
This characteristic allows reducing the 3D problem to
a 2D problem (Newman, 1977). These codes have a
limit on the lower frequency—this is due to an as-
sumption made on the free surface condition that re-
sults in a simplification of the boundary-value problem
(Salvesen et al., 1970). The two-dimensional hydrody-
namic problem associated with each section or strip of
the hull can be solved, for example, using conformal
mapping or panel methods. If the 2D code uses panel
methods to compute the hydrodynamic parameters as-
sociated with each strip, then the same limitations for
high frequencies discussed for the 3D codes hold. Strip
theory codes do not compute the zero and infinite fre-
quency cases.
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4 Parametric Model Identification

As mentioned in the introduction section, the convolu-
tion term in (4) is neither efficient for implementing nu-
merical simulations nor convenient for control system
analysis and design. This term can be approximated
by a state-space model; i.e.,

µ =

∫ t

0

K(t − t′)δν(t′) dt′ ≈

ẋ = A′x + B′ δν
µ = C′x

The advantage of the state-space model from a simu-
lation point of view lies in the Markovian character-
istic of the model: at any time instant, the value of
the state summarises all the past information of the
system. With regards to control system analysis, the
state-space formulation provides a rich framework.

The approximating state-space model for the convo-
lution term is obtained using system identification. For
this particular application consists, the identification of
only three steps:

1. Determine the structure and order of the model.

2. Estimate the parameters.

3. Validate the model.

This procedure is not new for this application consid-
ered in this paper, and there has been a significant
amount of literature dedicated to this problem during
the last 20 years. The reason for this is that the identifi-
cation problem can be posed either in the time domain
(using (10) as data) or in the frequency domain (using
(11) as data) and different estimators can be applied
in each case—this is illustrated in Table 1.

An important aspect of any identification problem
is the amount of a priori information available about
the dynamic system under study and how this informa-
tion is used. In general, using a priori information to
set constraints on the model structure and parameters
leads to better estimators (Agüero, 2005; Verhaegen
and Verdult, 2007).

Table 2 summarizes the properties of the retarda-
tion functions and their implications on the paramet-
ric models. These properties constitute a prior infor-
mation for the identification problem subject of study
in this paper. In Appendix A, we discuss the deriva-
tion of these properties in detail. In the sequel, we
briefly revisit different methods previously proposed in
the literature.

4.1 Time-domain Identification

The time-domain identification of radiation force mod-
els of marine structures consists of obtaining a para-
metric model from data of the impulse response. Two

different approaches have been proposed in the litera-
ture for this application:

• Impulse response Least-Squares (LS) fitting.

• Realization Theory.

4.1.1 Impulse Response LS fitting

The identification of radiation force models via LS-
fitting of the impulse response was proposed by Yu
and Falnes (1995, 1998). Each entry Kik(t) of the ma-
trix K(t) is approaximated by a state-space model of
appropriate dimensions:

ẋik = A′

ikxik + B′

ik δνk

µik = C′

ikxik.

The impulse response of this SISO system is given by

K̂ik(t) = C′

ik exp(A′

ikt)B′

ik.

Given a particular state-space relalisation, the matri-
ces can be parameterised in terms of the vector of m
parameters (where m = m(i, k)):

θik = [θ1
ik, . . . , θm

ik ]T .

Then, the parameter estimation problem can be posed
as a Least-Square (LS) problem:

θ̂ik = arg min
θ

∑

n

(

Kik(tn) − C′

ik(θ)eA
′

ik
(θ)tnB′

ik(θ)
)2

. (12)

Note that we have not considered a matrix D′

ik(θ) of
the state-space representation. This is a consequence
of the relative degree 1 of the memory functions as
indicated in Table 2 and showed in Appendix A.

4.1.2 Realization Theory

The application of Realization Theory to the identifica-
tion of the radiation force models of marine structures
was proposed by Kristansen and Egeland (2003)—see
also Kristiansen et al. (2005).

Realization Theory addresses the problem of obtain-
ing a state-space model (realization) of a system from
its Markoff parameters. This problem is easier to ad-
dress in discrete time since the Markoff parameters in
this case are the values of the impulse response. For a
SISO sytem, the impulse response is given by

Kk = CΦk−1Γ + D,

where Kk represents K(tk), and

xk+1 = Φxk + Γuk

yk = Cxk + Duk.
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Table 1: Identification Methods

Time Domain, (Data K(t))

[

Â′ B̂′

Ĉ′ D̂′

]

⇔ K̂(s)

Frequency Domain, (Data K(jω)) K̂(s) ⇔
[

Â′ B̂′

Ĉ′ D̂′

]

Table 2: Properties of Retardation Functions

Property Implication on Parametric Models Kik(s) = P (s)/Q(s)

1) limω→0 K(jω) = 0 There are zeros at s = 0.

2) limω→∞ K(jω) = 0 Strictly proper.

3) limt→0+ K(t) 6= 0 Relative degree 1.

4) limt→∞ K(t) 6= 0 BIBO stable.

5) The mapping ξ̇ 7→ µ is Passive K(jω) is positive real (diagonal entries Kii(jω) positive real.

A fundamental result by Ho and Kalman (1966) es-
tablishes that the Hankel matrix of the discrete-time
impulse response (constant along the anti-diagonals)
can be factorized as the extended controllability and
observability matrix:

Hk =











K1 K2 . . . Kk

K2 K3 . . . Kk+1

...
...

...
Kk Kk+1 . . . K2k−1











=















C

CΦ

CΦ2

...

CΦk−1















[

Γ ΦΓ Φ2Γ . . . Φk−1Γ
]

(13)

Furthermore, the rank of Hk, gives the order of the sys-
tem. Based on this result, Kung (1978), proposed an
algorithm based on the Singular Value Decomposition
(SVD) of Hk to obtain the state-space model. This is
done in three stages:

1. Compute the SVD: Hk = UΣV∗ (where ∗ de-
noted conjugate transpose).

2. Determine the (numerical) rank of Hk by count-
ing the number of significant singular values.

3. Find the matrices of the discrete-time state space
model from the factors of the SVD.

The SVD can be factored as follows

Hk = [U1U2]

[

Σ1 0
0 Σ2

]

[V∗

1V
∗

2 ] = U1Σ1V
∗

1 (14)

where Σ1 contains the n most significant singular val-
ues, and this determines the order of the system and
the partition of the other factors. Then, matrices of the
state-space realization can be determined as follows:

Φ = Σ
−1/2
1

[

U11

U12

]T [

U12

U13

]

Σ
1/2
1

Γ = Σ
−1/2
1 V∗

11

C = U11Σ
1/2
1

D = h(0),

where

U1 =





U11

U12

U13



 , V1 =





V11

V12

V13





with the dimensions of Uii and Vii being n × n. For
further details see Kung (1978).

Once the parameters of the discrete time model have
been obtained, the model can be converted to continu-
ous time using the bilinear transformation (Al-Saggaf
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and Franklin, 1988):

A′ =
2

Ts
(I + Φ)−1(Φ− I)

B′ =
2√
Ts

(I + Φ)−1Γ

C′ =
2√
Ts

C(I + Φ)−1

D′ = D − C(I + Φ)−1Γ,

where Ts is the sampling period. The methodology
described above is implemented in MATLAB in the
function imp2ss of the Robust Control Toolbox.

4.2 Frequency-domain Identification

Since the hydrodynamic codes provide the values of
A(ω), A(∞), B(ω) and thus K(jω) for a discrete set of
frequencies, it seems natural to use these data directly
in the frequency domain to fit a parametric model. Dif-
ferent approaches have been proposed in the literature
that follow this idea:

• Least-Square fitting of a rational transfer func-
tion to either the complex added mass or damp-
ing Ã(jω) and B̃(jω), where

Ã(jω) = jωB̃(jω) = A(∞) + K(jω)/jω.

• Least-Square fitting of a rational transfer func-
tion to

K(jω) = B(ω) + jω[A(ω) − A(∞)].

The first approach was proposed within the hydrody-
namic literature—see, for example, Söding (1982) , Xia
et al. (1998), and Sutulo and Guedes-Soares (2005).
The two proposals are related. In the sequel, we re-
visit the second approach, which was first proposed by
Jefferys (1984) and then further analysed by Damaren
(2000). Kaasen and Mo (2004) propose a variant to es-
timate the parameters of the approximation for K(jω),
but using only the data of B(ω). This approach has
the advantage that the infinite frequency added mass
is not necessary; and therefore, it is useful if one has
data from 2D hydrodynamic codes that in general do
not compute A(∞). The resulting optimisation prob-
lem can be solved with a similar method to that used
for the fitting of K(jω).

4.2.1 Frequency Response Curve Fitting

Since (11) provides a non-parametric model for the fre-
quency response of the convolution, it natural to use

this to fit a parametric model or appropriate dimen-
sions. One way of doing this is by means of LS opti-
mization. Indeed, consider the parametric model if i-k
entry of K(jω); then,

K̂ik(s, θ) =
P (s, θ)

Q(s, θ)
=

pmsm + pm−1s
m−1 + ... + p0

sn + qn−1sn−1 + ... + q0
,

(15)

with the vector of parameters defined as

θ = [pm, ..., p0, qn−1, ..., q0]
T . (16)

Then, a least squares approach consists of finding the
appropriate order of the numerator and denominator
polynomials and then find the parameters such that

θ⋆
ik = argmin

θ

∑

l

wl

∣

∣

∣
Kik(jωl) − K̂ik(jωl, θ)

∣

∣

∣

2

, (17)

where wl are weights that can be exploited to select
how important is the fit at different frequency ranges.

The above parameter estimation problem is a non-
linear LS problem in the parameters, which can
be solved using a Gauss-Newton algorithm, or it
can be linearized (Levy, 1959) and solved itera-
tively (Sanathanan and Koerner, 1963):

θm = argmin
θ

∑

l

sl,p |Qik(jωl, θ)Kik(jωl) − Pik(jωl, θ)|2 , (18)

where

sl,p =
1

|Qik(jωl, θp−1)|2
.

Note that (18) results in a Linear LS minimiza-
tion. After a few iterations (usually p=10 to 20),
Qik(jωl, θp) ≈ Qik(jωl, θp−1); and therefore, Eq. (17)
is approximately recovered. This allows solving the
nonlinear LS problem via an iteration of linear ones.

The LS fitting does not guarantee stability per se.
This issue can be addressed by computing the roots of
the resulting denominator polynomial, reflect any root
with positive real part about the imaginary axis, and
re-compute the coefficients from the new roots.

The function invfreqs of the signal processing tool-
box in MATLAB solves the linear problem with the op-
tion of using a vector of weighting coefficients. There-
fore, it is straightforward to implement the iterative
procedure starting with sl,1 = 1. The function also
has the option of solving the non-linear LS problem
via Gauss-Newton algorithms using the results of the
linearised problem as initial value of the parameters for
the optimisation.
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4.2.2 An Alternative Approach for

2D-hydrodynamic Data

When data from 2D hydrodynamic codes is used, the
infinite frequency added mass is normally not avail-
able. In this case, one could estimate its value and use
the method described in the previous section. This,
however, should be done carefully, since the method
described in the previous section can be sensitive to
this value. Kaasen and Mo (2004) presented a method
that resolves this problem by estimating the param-
eters using only the data of the computed damping
Bik(ω). This is possible because the parametric mod-
els for Kik(s) are stable and proper; therefore, it follows
form Bode’s integrals that the real part contains all the
information to reconstruct the imaginary part (Serón
et al., 1997).

From (11), it follows that the frequency dependant
damping coefficients are the real part of the retardation
functions:

Bik(ω) = ℜ{Kik(jω)}. (19)

From the parametric model (15), this can be expressed
as

ℜ{K̂ik(jω)} =
ℜ{P (jω, θ)Q(−jω, θ)}

Q(jω, θ)Q(−jω, θ)

=
R(ω, θ)

S(ω, θ)
,

(20)

where R(ω, θ) and S(ω, θ) are real polynomial with
only even powers of ω. If the degree of P (ω, θ) is m
and the the degree of Q(ω, θ) is n, the relative degree
constraint in Table 2 establishes that m = n−1. There-
fore, the degree of R(ω, θ) is 2n − 2 and the degree of
S(ω, θ) is either 2n.

The coefficients of R(ω, θ) and S(ω, θ) are related to
θ in a nonlinear fashion. We can see this from a simple
example. Based on the properties of the convolution
terms given in Table 2, it follows that the minimum
order transfer function that satisfies all the properties
is a second order one of the following type:

K̂ik(s, θ) =
ps

s2 + q1s + q0
, (21)

with θ = [θ1, θ2, θ3]
T = [p, q1, q0]

T . Form (20), we
obtain

R(ω, θ)

S(ω, θ)
=

pq1(jω)2

(jω)4 + (2q0 − q2
1)(jω)2 + q2

0

. (22)

Here, we can see that coefficients of the polynomials
R(ω, θ) and S(ω, θ) are non-linear in θ. Expression
(22) can be re-parameterise in terms of

θ
′ = [θ′1, θ

′

2, θ
′

3]
T = [pq1, 2q0 − q2

1 , q
2
0 ]

T , (23)

which gives

R(ω, θ′)

S(ω, θ′)
=

θ′1(jω)2

(jω)4 + θ′2(jω)2 + θ′3
. (24)

Using this new parameterisation, we can estimate the
new parameters via

θ′⋆ = argmin
θ′

∑

l

(

Bik(ωl) −
R(ωl, θ

′)

S(ωl, θ
′)

)2

. (25)

Note that this problem, is similar to (17); and therefore
it can be solved in a similar way.

After optimising θ′, we can obtain θ. The prob-
lem with this approach is that different values of θ can
result in the same θ′. Indeed, for the second-order
example considered above, we have the following rela-
tionships:

θ3 = ±
√

θ′3,

θ2 = ±
√

2θ3 − θ′2,

θ1 = θ′1/θ2,

(26)

which show the identifiability problem. This issue,
however, is solvable by adding constraints related to
the stability of the system.

Kaasen and Mo (2004) addressed this problem in a
different way. They made a partial-fraction expansion
of (20) in terms of ω2:

R(ω2, θ′)

S(ω2, θ′)
=

r′1
ω2 − p′1

+
r′2

ω2 − p′2
+ · · ·+ r′n

ω2 − p′n
, (27)

The residuals r′i and the poles p′i are related to the
residuals and poles of the partial-fraction expansion of
(15):

P (jω)

Q(jω)
=

r1

jω − p1
+

r2

jω − p2
+ · · · + rn

jω − pn
, (28)

via

pi = ±j
√

p′i, ri = − r′i
pi

. (29)

After the poles and residuals pi and ri are computed
(choosing the appropriate sign so ℜ{pi} < 0), the pa-
rameters θ are obtained by distributing (28).

Finally, a perhaps, less involved alternative, con-
sists of using the force to velocity frequency response
to estimate an input-output parametric model as pro-
posed by Perez and Lande (2006). This approach
does not require either A. Indeed, from the data
computed by the hydrodynamic code, one can com-
pute the force-to-motion frequency response functions

7
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(non-parametric models). It follows from (5) that the
force-to-displacement and force-to-velocity frequency
response functions for the case of can be computed via

Hf2d(jω) = (−ω2[M + A(ω)] − jωB(ω) + G)−1,

(30)

Hf2v(jω) = (jω)Hf2d(jω). (31)

Having the frequency responses we can then fit a trans-
fer function. If this is done to the force to velocity
model, then by adding integrators, we can obtain the
displacements. This allows having access to both vari-
ables that may be needed to complement the model
with non-linear components (like viscous efects) and
motion control systems. Further details on this ap-
proach go beyond the scope of this paper, and the in-
terested reader can see—Perez and Lande (2006).

5 Assessing the Quality of the

Model

Once the parametric model for the convolution terms
are obtained, we can assess how good the impulse and
the frequency response are fitted. However, we should
also assess how good the parametric models are with
respect to the force-to-motion frequency responses (30)
and (31). This comparison is a key issue, for two rea-
sons:

• When simulating the motion of marine struc-
tures, we are often more interested in the dis-
placements and velocities, rather than in the ra-
diation forces.

• As we argue in the next section, the quality of
the force-to-motion models obtained via (34) and
(35) is not very sensitive to the quality of the

convolution model K̂(s).

Using the parametric models of the convolution
terms we can obtain the Transfer Function (TF) matrix

K̂(s) =









P11(s)
Q11(s) · · · P16(s)

Q16(s)

...
. . .

...
P61(s)
Q61(s) · · · P66(s)

Q66(s)









. (32)

If the parametric models are identified using frequency-
domain methods this is obtained directly. If the models
are identified using time-domain methods, this transfer
matrix is obtained using the Laplace Transform:

K̂ik(s) = Ĉik(sIik − Âik)−1B̂ik. (33)

Then, it also follows from the Laplace Transform of (4)
that the force-to-displacement and force-to-velocities
TFs are

Ĥf2d(s) = s−1[I + G′(s)K̂(s)]−1K̂(s), (34)

Ĥf2v(s) = [I + G′(s)K̂(s)]−1K̂(s), (35)

where

G′(s) = (s2I + [M + A(∞)]−1G)−1[M + A(∞)]−1s.
(36)

We can ten compare (34) (for s = jω) with (30) and
(35) (for s = jω) with (31).

6 Passivity

The last property in Table 2, states that the transfer
function model K̂(s) should be passive and thus posi-
tive real to agree with the properties of the of retarda-
tion functions—See Appendix A. This property derives
from the fact that the radiation forces are dissipative
(Damaren, 2000; Kristiansen et al., 2005).

One of the fundamental properties of passive sys-
tems is that the negative feedback interconnection of
passive systems is passive; and thus, stable under ob-
servability conditions (Khalil, 2000). Figure 1 shows
a block diagram representation of the Cummins Equa-
tion in the frequency domain in terms of the paramet-
ric model K̂(s) and the transfer function matrix G′(s)
given in (36). This figure shows the negative feedback

interconnection between K̂(s) and G′(s). The trans-
fer function matrix G′(s) is passive (Kristiansen et al.,
2005). Therefore, the interconnection shown in Fig-

ure 1 will also be passive provided the model K̂(s) is
passive. Here lies the importance of passivity of the
identified parametric model.

The non-passivity of K̂(s) does not necessarily imply
that the interconnection shown Figure 1 in will be un-
stable. However, since the passivity property follows
from the hydrodynamics it is desirable to retain this
property in the model. As we will see in the numeri-
cal example of Section 8, a non passive entry for the
diagonal terms implies that B̂ii(ω) = ℜ{K̂ii(jω)} < 0
for some frequencies, which is not consistent with the
hydrodynamic theory.

7 A Discussion about Time- and

Frequency-domain Identification

In Section 4, we have briefly revisited the main meth-
ods that have been proposed in the literature for the
identification of parametric models to replace the con-
volution terms in the Cummins Equation. In this sec-
tion, we discuss the applicability of these methods and

8
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+

−

ts

ξ̇ ξ
τw

µ

G′(s)

K̂(s)

∫

Figure 1: Block diagram of the the Cummins Equation
in terms of parametric transfer functions.

compare them. We based our comparison on three
characteristics:

• Ability of the model to reproduce the
properties of the convolutions derived from
hydrodynamics—see Table 2.

• Use of available prior information (low frequency
asymptotic values, relative degree, stability, and
passivity.)

• Ease of use and implementation of the identifica-
tion method.

Before going into the discussion of the different iden-
tification methods for the radiation force models, we
we would like to draw attention to the errors that ap-
pear in the time-domain data due to finite frequency-
domain data. These errors affect all the time-domain
identification methods.

7.1 Errors in the Non-parametric

time-domain Data

The quality of the identified model using any time-
domain identification method depends on the accuracy
of the non-parametric model Kik(t). This impulse re-
sponse is computed from the hydrodynamic data us-
ing (10). However, as discussed in Section 3, hydro-
dynamic computations impose limits on the frequency
interval used to evaluate the integral (10). Thus,

K(t) ≈ K̄(t) =
2

π

∫ Ω

0

B(ω) cos(ωt) dω. (37)

The finite upper limit in the integral above introduces
an error:

K(t) = K̄(t) + ǫ(Ω, t),

ǫ(Ω, t) =
2

π

∫

∞

Ω

B(ω) cos(ωt) dω.
(38)

For the case of zero-forward speed, Journée (1993)
gives an estimation of the magnitude of the errors for
the decoupled modes. To reduce the error, one could
use asymptotic values of B(ω) to increase Ω. For the

case of zero speed case, Greenhow (1986) derived the
following asymptotic trend using series expansions:

as ω → ∞, Bik(ω) → β1

ω4
+

β2

ω2
. (39)

Note that as ω increases the above is dominated by
the ω−2 term. The ω−2 trend follows immediately
from the degrees of R(ω) and S(ω) in (20) (Perez and
Fossen, 2007). The asymptotic behaviour (39) can be
explained from the relative degree of the parametric
representation, and as shown in the the Appendix, it
will be exhibited whenever the area under the damping
curve is not zero.

Figure 2 shows the computed damping in the ver-
tical modes of a particular vessel at zero speed used
to illustrate the discussion in this paper (Further de-
tails about this vessel are given in Section 8). Fig-
ure 3 shows computed damping and the asymptotic
tails based on (39), and Figure 4 shows the retardation
functions computed from (37) using the damping with
and without asymptotic tails. In the latter figure we
can appreciate the difference in the impulse response
due to the finite-frequency limit.
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Figure 2: Potential damping computed by hydrody-
namic code.

7.2 Impulse Response LS fitting

The method of fitting the impulse response has a few
drawbacks that could render it impractical for appli-
cation to memory functions. The parameter estima-
tion problem (12) is a nonlinear LS problem. This
problem can be solved numerically via Gauss-Newton
methods—see, for example Nocedal and Wright (2006).
The performance of the optimisation algorithm de-
pends on the initial guess for the value of the param-
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Figure 3: Potential damping computed by hydrody-
namic code and extrapolation based on
asymptotic tail.
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Figure 4: Retardation functions computed from the
potential damping.

eters. These values, in turn, depend on the particu-
lar realization1 used. This realization must be adopted
without any guidelines. Yu and Falnes (1995, 1998), for
example, use an observer canonical realization, which
reduces the number of parameters to be estimated to
twice the order of the system. It is not clear, how-
ever, whether this is the best choice. Indeed, the pa-
rameteristion affects the shape of cost function being

1By making a change of basis Tx = z with any non-
singuar square matrix T a new state-space model is obtained
(Az ,Bz ,Cz) in terms of the variable z without changing the
input-output properties or the model (Kailath, 1980). Each
model derived via a change of basis is called a realization.

optimised, and also the constraints in the parameter
space if these are necessary. Therefore, some realisa-
tions could result in numerical problems (Verhaegen
and Verdult, 2007).

Another disadvantage of this method is that the or-
der of the model is not easy to estimate by looking a
the impulse response. To alleviate this, one can follow
the same procedure as in realization theory and esti-
mate the order from the numerical rank of the matrix
(13) formed from the samples of the impulse response.

Due to the issues discussed above, the application
of this method has not proliferated beyond the initial
proposal by Yu and Falnes (1995, 1998).

7.3 Realization Theory

This method has the advantage that the order of the
system can be obtained by counting the number of sig-
nificant singular values of Hk given in (13)—a matrix
assembly of the samples of the impulse response. High
order models, however, may result depending on the
how close the singular values are and how the decision
whether to consider a particular singular value signifi-
cant or not is implemented.

Since the parameters of the models are obtained from
a factorization of Hk rather than an optimization prob-
lem, it is not necessary to have an initial guess of the
the parameters, which is also an advantage. On the
other hand, the method has a few disadvantages when
it comes to the application to the fluid memory func-
tions due to the impossibility of enforcing model struc-
ture.

As discussed in Section 7.1, the quality of the iden-
tified model depends on the accuracy of the non-
parametric models Kik(t). The errors introduced in
the impulse response due to the finite high-frequency
limit Ω in the integral (37) affect the order selection.
For example, Figure (5) shows the normalised singular
values obtained from the Hankel matrix assembles with
the different impulse response samples corresponding
to Figure 4. In this figure, we can see that the sin-
gular values cenrtainly indicate different order approx-
imations. This is further discussed in Section 8.

Apart from the errors introduced in the computation
of the non-parametric models Kik(t) due to the finite
frequency data, the method identifies the models in
discrete time, which then may need to be converted to
continuous time. As commented in Section 4, this can
be done using the bi-linear transformation, but this
may also introduces errors.

The consequence of the errors incurred in the compu-
tation of the non-parametric impulse response together
with those arising from the discrete to continuous time
conversion is that, normally, the models obtained with
Realization Theory satisfy neither the low frequency

10



Perez and Fossen, “TD vs FD Identification for Radiation Force Models in Marine Structures”

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 S
in

gu
la

r 
V

al
ue

s

 

 
K33
K33ext

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 S
in

gu
la

r 
V

al
ue

s

 

 
K35
K35ext

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 S
in

gu
la

r 
V

al
ue

s

 

 
K53
K53ext

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 S
in

gu
la

r 
V

al
ue

s

 

 
K55
K55ext

Figure 5: Singular values of the Hankel matrix of the
samples of the impulse response.

asymptotic values nor the relative degree of the mem-
ory functions. In addition, the models obtained may
not be passive. Therefore, it may be necessary to per-
form model order reduction or to try different orders to
obtain a passive approximation—see Kristiansen et al.
(2005) and Unneland (2007).

Regarding implementation, the algorithm of Kung
(1978) is implemented in MATLAB in the function
imp2ss of the Robust Control Toolbox. This imple-
mentation allows setting the threshold on the singular
values to select the order. The default threshold con-
siders singular values greater than 1% of largest one.
This value results in high order models that then need
to be reduced by the subsequent application or order
reduction methods—see, for example, Unneland et al.
(2005); Kristiansen et al. (2005); Unneland (2007). If
one does not have access to MATLAB, the method is
rather involved to implement since it requires signifi-
cant matrix factorizations.

7.4 Retardation Frequency Response

Curve Fitting

The main advantages of this method are the directness,
ease of implementation, and the possibility of using
most of the prior information to constraint the model
structure; and thus, obtain better approximations. In-
deed, the parameter estimation method is very sim-
ple to implement and use: it requires to solve linear
LS problems iteratively. Therefore, there is no need
for an initial parameter guess. On the other hand,
all the prior information about the model can be used
to enforce a model structure such that the resulting
model would satisfy the properties of the convolution

terms. In this regard, this seems to be the most effi-
cient method among all the proposals appearing in the
literature.

Automatic order detection can be easily imple-
mented. Based on the properties of the convolution
terms given in Table 2, it follows that the minimum
order transfer function that satisfies all the properties
is a second order one:

K̂ik(s, θ) =
ps

s2 + q1s + q0
.

Therefore, we can start with this minimum order trans-
fer function, and increase the order while monitoring
that the LS cost decreases. If the order of the pro-
posed model is too large, there will be over-fitting and
therefore, the cost will increase; however before this
happens, the value of the cost normally remains un-
changed as one increments the order of the system.

Since the optimisation considered is unconstrained,
the model obtained cannot be guaranteed to be sta-
ble and passive. The stability issue can be resolved
by computing the roots of the denominator obtained,
reflecting the unstable roots about the imaginary axis,
and re-computing the denominator polynomial. This
is can be interpreted as optimising over a space of pa-
rameters and then making a particular projection into
a subspace. This method gives good quality approxi-
mations.

With regards to passivity, a simple way of dealing
with this problem is to try different order approxima-
tions and choose the one that is passive. Normally,
the low-order approximations models of the convolu-
tion terms given by this method are passive. Besides,
as we will see in an example in the next section, the
quality of the convolution term approximation usually
have a small effect on the force-to-motion response.
Therefore, one can lower the order and trade fitting
accuracy for passivity. A different approach would be
optimise the numerator of the obtained non passive
model to obtain a passive approximation—this goes
beyond the scope of this paper, but the reader is re-
ferred to Damaren (2000) and references therein.

The main disadvantage of the method for the iden-
tification radiation force models is related to the sen-
sitivity of the frequency response (11) to errors in the
computed infinite frequency added mass: A = A(∞).
This could result in frequency response functions that
are hard to fit. This effect could be problematic when
A(∞) is not computed by the hydrodynamic code and
should be estimated from the finite-frequency data be-
fore constructing the non-parametric model K(jω) via
(11). In these cases, one could follow the methods
discussed in Section 4.2.2. However, in these cases,
it would be more accurate to apply frequency-domain
curve fitting directly to the force-to-motion frequency
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response—which does not require the computation of
A(∞) as proposed by Perez and Lande (2006).

8 Illustration Example

To illustrate the use of the time and frequency domain
identification methods and points argued in the previ-
ous section, we will use hydrodynamic data correspond-
ing to the vertical motion (pitch-heave) of a 300m con-
tainer ship presented by Taghipour et al. (2008). The
hydrodynamic data was computed using WAMIT 6.1–a
3D hydrodynamic code.

Figure 2 shows the potential damping components
of the vertical motion. The maximum frequency used
in in the computations was 2.5 rad/s. As commented
in Taghipour et al. (2008), this maximum frequency
was consistent with panelling size used to describe the
geometry of the hull. Also the excitation forces and
the response from wave to motion were negligible for
frequencies higher than 2.5rad/s.

Despite the fact that at 2.5rad/s, there is no signifi-
cant excitation force and motion response, this is still
relatively low frequency for the damping terms to be
approaching their asymptotic values. This particularly
so for the coupling terms as depicted in Figure 2 . As
commented in Section 7.3, this is expected to affect the
accuracy of the impulse response—c.f. (38). In order to
investigate this issue, we can compute the impulse re-
sponse using the damping as computed by the hydrody-
namic code and that extrapolated with the asymptotic
values as per (39). Figure 3 shows the extrapolation
of the damping, and Figure 4 shows the retardation
functions computed based on using the damping data
with and without extrapolation. From Figure 4, we
can see the error incurred due to the finite maximum
frequency Ω in (37). The first effect is the difference in
the value at t = 0+, and the second is the ringing—this
is more noticeable for the coupling heave-pitch than for
the heave and pitch retardation functions.

To further evaluate what impact these different re-
tardation functions can have in the application of Real-
ization Theory, we can compute the singular values of
the Hankel matrix of the samples of these impulse re-
sponses. Figure 5 show such singular values normalised
by the largest one. From this figure, we can see that
the error in the impulse responses due to the finite fre-
quency results in more dynamics (recall that the num-
ber of significant singular values indicate the order of
the model). This could be anticipated from the ring-
ing effect in shown in the impulse responses shown in
Figure 4.

The singular values obtained for the retardation
functions based on the extrapolated damping, indicate
that the following orders should be adecquate for the

parametric models:

• K33(s) order 2

• K35(s) and K53(s) orders 3 to 5

• K55(s) order 3

Setting the order of the models to 2 for K33(s) , 3 for
K35(s), and 3 for K55(s), we used Realization Theory
to identify the state-space models. Then by model con-
version via (33), the following transfer functions were
obtained:

K̂TD
33 (s) = 107 3.4522s− 0.0524

s2 + 0.7212s + 0.2
, (40)

K̂TD
35 (s) = 109 1.0704s2 + 0.1474s + 0.0022

s3 + 2.3261s2 + 0.6963s + 0.1130
,

(41)

K̂TD
55 (s) = 1011 2.7374s2 + 0.4679s + 0.0121

s3 + 1.6254s2 + 0.6441s + 0.1794
(42)

Here, we can see that none of the transfer functions
have zeros at s=0, and K̂33(s) is not passive and non-
minimum phase. Figures 6 and 7 show, for example,
the impulse and frequency response of (40). Here, we
can see that the impulse response approximates well
the non-parametric response. The frequency response,
however, shows that the property of passivity and low
frequency asymptotic values are not satisfied by the
identified model—as discussed in Section 7 this is one
of the main drawbacks of the method. Further, Fig-
ures 8 and 9 show the reconstruction of damping and
added mass from the real and imaginary part of the
convolution parametric models.
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Figure 6: K33(t) and K̂33(t) based on Realization the-
ory.
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Figure 7: K33(jω) and K̂33(jω) based on Realization
theory.
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Figure 8: Reconstruction of potential damping from

the real part of K̂33(jω) based on Realiza-
tion theory.
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Figure 9: Reconstruction of added mass from the imag-

inary part of K̂33(jω) based on Realization
theory.

Proceeding with the application of frequency-domain
identification using the same order approximations as
in the time-domain identification case, we obtained the
following transfer functions:

K̂FD
33 (s) = 107 3.124s

s2 + 0.6258s + 0.2088
, (43)

K̂FD
35 (s) = 109 1.209s2 + 0.3973s

s3 + 2.954s2 + 1.149s + 0.2478
, (44)

K̂FD
55 (s) = 1011 2.931s2 + 0.902s

s3 + 1.974s2 + 0.8207s + 0.2819
(45)

These transfer functions satisfy all of the properties of
the memory functions—see Table 2.
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Figure 10: K̂33(t) based on frequency response curve
fitting.
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Figure 11: K33(jω) and K̂33(jω) based on frequency
response curve fitting.

Figure 10 and 11 show, for example, the impulse re-
sponse and the frequency response of (43). If we com-
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Figure 12: Reconstruction of potential damping from

the real part of K̂33(jω) based on frequency-
domain curve fitting.

pare the results with Figure 6, we can see that impulse
responses are similar. The frequency response shown
on Figure 11 is, however, different from that shown
in Figures and 7—as (43) satisfy all the properties of
the memory functions. We can also see in Figures 12
and 13 that there is a better reconstruction of damping
and added mass from the real and imaginary part of
the convolution identified parametric models.

Finally, Figures 14 and 15 show the non-parametric
and the parametric force-to-displacement frequency re-
sponses based on the identified models using both re-
alisation theory and frequency domain curve fitting.
We can see that there is little difference despite the
significant difference in the convolution frequency re-
sponses and the potential damping and added mass
approximations obtained with the two methods. This
supports the statement made in Section 7 that errors in
the convolution approximation have little impact in the
force-to-motion model. In this regard, It is interesting
to observe that in Taghipour et al. (2008), the authors
used the same data for the illustration example that we
are using in this paper. This further indicates that one
should not spend too much effort on the convolution
models, for they have a small impact on the force-to-
motion response. Perhaps the use frequency-domain
identification to fit the force-to-motion responses di-
rectly is a more appropriate approach Perez and Lande
(2006).

9 Conclusions

In this paper, we have discussed the application of
the time- and frequency-domain identification meth-
ods for obtaining parametric models of fluid memory
terms describing radiation forces of marine structures.
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Figure 13: Reconstruction of added mass from the

imaginary part of K̂33(jω) based on
frequency-domain curve fitting.

We revisited some of the methods proposed in the lit-
erature for this particular application, and discussed
the two methods have proliferated beyond their initial
proposals; namely, Realization Theory and frequency-
response curve fitting. The first method seeks a para-
metric model from samples of the impulse response,
whereas the other method use LS fitting of the fre-
quency response function.

The application of Realization Theory to fluid mem-
ory functions could be described as an indirect method.
That is, the hydrodynamic codes output frequency do-
main data, which is then used to generate an approxi-
mated impulse response that the method uses to obtain
a parametric model. The algorithm described works in
discrete-time, and the model then can be converted to
continuous time, which also involves approximations.
These approximations often result in model that do not
satisfy the frequency-domain properties of the mem-
ory functions. However, it was also discussed, and il-
lustrated via an example, that inability of the mod-
els to reproduce all the properties of the convolution
terms, may have little influence on the force-to-motion
response. It was also argued that this method is com-
plex to implement; and that model order reduction may
be required after the identification.

The application of frequency-response curve fitting
provides the simplest method to implement (iterative
linear LS), and the quality of the models is normally
superior to those obtained by application of Real-
ization Theory. This method uses frequency-domain
data directly avoiding unecessary errors in computing
the impulse response; also, the identification provides
continuous-time models. The reason for providing su-
perior models, is that this method allows forcing the
structure of the model so as to satisfy all the properties
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of the convolution terms. However, if the infinite added
mass is not computed by the hydrodynamic code, and
instead is estimated from finite frequency-domain data,
then the fitting may be difficult due to the high sensi-
tivity to errors in the estimated values. In this cases,
one should be careful and perhaps attempt a regression
of the force-to-motion data instead, which does not re-
quire the computation of the infinite frequency added
mass.

Neither the identification algorithm based on Reali-
sation Theory nor the one based on frequency-response
curve fitting discussed in this paper can enforce passiv-
ity. One way to address this issue is by checking dif-
ferent order approximations, and picking the one that
is passive. This often leads to a trade of accuracy for
passivity since low order approximations often result
passive with the discussed methods.

A low accuracy in the convolution model fit may
not, however, be of much concern since rough approx-
imations of the fluid-memory terms can still lead to
good approximations of the force-to-motion models.
This is due to the feedback structure of the force-to-
motion model, which filters out most of the dynamics of
the convolution terms. This suggests that one should
not only assess the convolution models, but also the
force-to-motion models to avoid spending too much ef-
fort in improving convolution models, when this results
only in a small improvement of the force-to-motion re-
sponse.
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10 Properties of the Retardation

Functions

Low-frequency Asymptotic Value

The low-frequency asymptotic value is

lim
ω→0

K(jω) = 0. (46)

The proof of this statement follows from (11). In the
limit as ω → 0, the potential damping B(ω) tends to
zero since structure cannot generate waves at zero fre-
quency. This is because the approximating free-surface
condition establishes that there cannot be both hori-
zontal and vertical and velocity components in the free
surface (Faltinsen, 1990). On the other hand, in the
limit as ω → 0 the imaginary part tends to zero since
the difference A(0) − A(∞) is finite:

A(0) − A(∞) = lim
ω→0

−1

ω

∫

∞

0

K(t) sin(ωt)dt

=

∫

∞

0

K(t) lim
ω→0

− sin(ωt)

ω
dt

= −
∫

∞

0

K(t) dt.

Note that regularity conditions are satisfied for the ex-
change of limit and integration (Parzen, 1954); i.e.,
fn = K(t) sin(2πt/n)/(2πt/n) converges uniformly to
K(t) as n → ∞.

High-frequency Asymptotic Value

The high-frequency asymptotic value is

lim
ω→∞

K(jω) = 0. (47)

The proof of this statement follows from (11). In the
limit as ω → ∞, the real part tends to zero since since
there cannot be generate waves. As in the case of
zero frequency, this is because the approximating free-
surface condition establishes that there cannot be both
horizontal and vertical and velocity components in the
free surface (Faltinsen, 1990).

The imaginary part also tends to zero, and this fol-
lows from (8) and the Riemann-Lebesgue Lemma:

lim
ω→∞

ω[A(0) − A(∞)] = lim
ω→∞

−
∫

∞

0

K(t) sin(ωt)dt = 0.

Initial-Time Value

This follows from (10):

lim
t→0+

K(t) = lim
t→0+

2

π

∫

∞

0

B(ω) cos(ωt) dω

=
2

π

∫

∞

0

B(ω) dω 6= 0,

(48)

Where the last statement is a consequence of en-
ergy considerations, which establish that Bii(ω) > 0
(Faltinsen, 1990). Note that regularity conditions are
satisfied for the exchange of limit and integration in
(48) (Parzen, 1954).

This property has a bearing on the relative degree
of the parametric models of the convolution terms. In-
deed, for the entries Kik(jω), which are not uniformly
zero due to symmetry of the hull, the following holds
due to the initial-value theorem of the Laplace Trans-
form:

lim
t→0+

Kik(t) = lim
s→∞

sKik(s)

= lim
s→∞

s
Pik(s)

Qik(s)
.

(49)

The latter is different from zero only if relative degree
of Kik(s) is 1; i.e., degQik(s) − degPik(s)=1.

Final-Time value

This follows from (10) and the application of the
Riemann-Lebesgue Lemma:

lim
t→∞

K(t) = lim
t→0+

2

π

∫

∞

0

B(ω) cos(ωt) dω = 0. (50)

This property establishes necessary and sufficient con-
ditions for bounded-input bounded-output (BIBO) sta-
bility of the convolution term in the Cummins Equa-
tion.

Passivity

Passivity describes an intrinsic characteristic of sys-
tems that can store and dissipate energy, but not cre-
ate it. The concept of energy can be generalised, and
passivity formalised in mathematical terms to be used
even for non-physical systems. If a system has a vec-
tor input u, vector output y and some internal vector
variable x, which can be used to quantify the amount
of energy stored in the system E(x). Then the passiv-
ity property of the system establishes that the energy
absorbed by the system must be greater than or equal
to the energy stored in the system:

∫ t

0

uT (t′)y(t′) dt′ ≥ E(x(T )) − E(x(0)).

Since this holds for all t, the instantaneous power sat-
isfies:

uT (t)y(t) ≥ Ė(x(t)).

If this is is satisfied, the system is said to be passive.
The above it is an informal account of the concept, the
reader should refer, for example, to Khalil (2000) for a
formal discussion.
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Damaren (2000) was the first to discuss the passiv-
ity of the radiation force components due to memory
effects. In his approach, he considered the mechanical
energy of the system (kinetic + potential):

E(t) =
1

2
ξ̇

T
Mξ̇ +

1

2
ξT Cξ.

By considering only the radiation problem (no incident
waves),

Mξ̈ + Cξ = τR,

the derivative of the energy reduces to Ė = ξ̇
T
τR; and

thus

E(T ) − E(0) =

∫ t

0

τT
R ξ̇ dt′.

This result establishes that the mapping ξ̇ 7→ τR is
passive (Lozano et al., 2000). Therefore, the convolu-
tion term in the Cummins Equation is a passive map-
ping. An alternative derivation to the one above can
be found in Kristiansen et al. (2005).

For linear-time-invariant systems a necessary and
sufficient condition for passivity can be translated into
the frequency domain as positive realness; that is, the
real part of the transfer function is positive for all fre-
quencies. This implies that

ℜ{K(jω)} ≥ 0, ∀ω.

In the case of structures with zero-average forward
speed, this follows from the fact that

B(ω) = B(ω)T ≥ 0,

which implies that Bii(ω) ≥ 0 for all ω (Newman, 1977;
Faltinsen, 1990). Unneland (2007) uses the positive
semi-definite property of the potential damping (for
zero speed) as a starting point and provides a deriva-
tion of the passivity property of the convolution terms
using frequency-domain arguments.
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Figure 14: Force-to-displacement frequency response functions: non-parametric, and parametric based on Re-

alization Theory.
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Figure 15: Force-to-displacement frequency response functions: non-parametric, and parametric based on fre-
quency response curve fitting.

19


